• OpenAccess
    • List of Articles :

      • Open Access Article

        1 - Study of Petrography & Petrophysics of Permian- Triassic carbonate sediments in Qatar –South Pars Arch
        Ali reza Bashari
        Abstract Dalan and Kangan Formations are major gas reservoirs in the Persian Gulf and surrounding area. Several supper giant gas fields has been found in the region. In this study reservoir rock types were identified and were divided into four lithostratigraphic zo More
        Abstract Dalan and Kangan Formations are major gas reservoirs in the Persian Gulf and surrounding area. Several supper giant gas fields has been found in the region. In this study reservoir rock types were identified and were divided into four lithostratigraphic zones: K1 to K4. Each of the four succeeding zones have been divided into different subzone. This Studies identified different facies-types on the Dalan and Kangan formation in this region. Petrophysical & Petrographycal studies indicate that the best reservoir unites are found in: Dolo-grainstones, Dolowakestones/Packstones and Grainstones. Isopach maps and Depth maps show variations in thickness and depth of different zones in this region. Depth map on top of Kangan formation shows this formation getting deeper toward north- west and south east in the Persian Gulf. Continuity of marker beds in Permian/Triassic sediment and paleontological evidence support diachroneity of these sediments. Manuscript profile
      • Open Access Article

        2 - Evaluation of hydrocarbon potential of Gadvan Formation in Binak, Gachsaran and Marun fileds by geochemical methods and thermal modeling.
        نغمه مرتاضیان
        Investigation on hydrocarbon source rock potentiality of Gadvan Formation in Marun, Gachsaran and Binak oil fields using Rock-eval pyrolysis shows that Gadvan Formation in Marun and Gachsaran oil fields is an effective source rock and is capable of generating hydrocar More
        Investigation on hydrocarbon source rock potentiality of Gadvan Formation in Marun, Gachsaran and Binak oil fields using Rock-eval pyrolysis shows that Gadvan Formation in Marun and Gachsaran oil fields is an effective source rock and is capable of generating hydrocarbon (oil and gas) , whereas the same formation in the Binak oil field has no hydrocarbon generation potential. The presence of organic matter in Gadvan Formation from Marun and Gachsaran oil fields suggests a mixture of kerogen type II/III and in Binak oil field kergen type III is dominant. Based on Tmax values derived from Rock-Eval pyrolysis, Gadvan Formation in Marun and Gachsaran oil fields is thermally mature and entered oil window stage but in Binak oil field this formation is immature and has not entered oil window yet. The results obtained from pyrolysis and virtinite reflectance measurements are in good agreement with thermal history modeling using PBM software program. Organic facies curve plotted for the Gadvan Formation indicates organic facies BC for Marun and Gachsaran oil fields and organic facies CD for Binak oil field suggesting marine persistent anoxic to oxidizing conditions prevailed during early deposition Manuscript profile
      • Open Access Article

        3 - Biostratigraphy of the Gurpi Formation Based on Planktonic foraminifera with emphasis on the Cretaceous-Paleogene boundary in Jahangirabad Section, Kabirkuh Anticline, SW Iran
        Alireza Ashouri Samira Rahimi Abass Sadeghi Abbas Ghaderi
        In this research, biostratigraphy of the Gurpi Formation in Jahangirabad section, SW Iran, has been studied .The thickness of the Gurpi Formation in this section is 263 and consists mainly of argillaceous limestone and limestone. The lower boundary with the Ilam Formati More
        In this research, biostratigraphy of the Gurpi Formation in Jahangirabad section, SW Iran, has been studied .The thickness of the Gurpi Formation in this section is 263 and consists mainly of argillaceous limestone and limestone. The lower boundary with the Ilam Formation is comformable with sharp lithology and upper boundary with the Pabdeh Formation is gradational. In this study, 76 species belong to 17 genera and 8 biozones of planktonic foraminifera were recognized. The biozones consist of Globotruncana ventricosa Zone, Radotruncana calcarata Zone, Globotruncanella havanensis Zone, Globotruncana aegyptica Zone, Gansserina gansseri Zone, Contusotruncana contuosa Zone, Abathomphalus mayaroensis Zone and Pseudoguembelina hariaensis. The age of the Gurpi Formation in this section based on these biozones is Middle Campanian to Late Maastrichtian in this section. Manuscript profile
      • Open Access Article

        4 - Impact of shale oil revolution on falling of Oil and Gas prices Technical report
        Ali reza Bashari
        The rapid development of shale gas resources in the US has transformed the world gas-market outlook. Despite this, the consensus was for a long time that shale gas would not be a ‘game changer’ in the world as it has been in the US. Shale gas is extracted from solid roc More
        The rapid development of shale gas resources in the US has transformed the world gas-market outlook. Despite this, the consensus was for a long time that shale gas would not be a ‘game changer’ in the world as it has been in the US. Shale gas is extracted from solid rock using a process called hydraulic fracturing, or ‘fracking’. Static shows, in USA, production rates decline, for the most of well on average, 80 0r 85 percent over the three years. In order to maintain current level of shale gas production, Hughes estimates that the high rates of deterioration of such wells across the US will require the drilling of 7,000 new wells a year at cost of $42 billion annually. For the maintenance of overall production of shale oil, some 6,000 new wells would need to be drilled every year, an endeavor that would cost $ 35 billion. A number of environmental concerns have been raised about fracking, including the potential for seismic events, air pollution, surface and groundwater contamination, and greenhouse gas emissions. There is no doubt that shale revolution has been a game-changer in short term, but the implication shows that it is not sustainable in long-term. Manuscript profile
      • Open Access Article

        5 - Laboratory study of alteration in reservoir rock wettability for the prevention of asphaltene sediment formation using metal oxide Nano-particles
        abdolhamid ansari Sadegh Ameri
        One of the methods of harvesting oil reservoirs is the injection of nanoparticles. Nanoparticles increase oil recovery from reservoirs by changing wettability, reducing surface tension, reducing oil viscosity. Metallic nanoparticles (ceramic nanoparticles) have the high More
        One of the methods of harvesting oil reservoirs is the injection of nanoparticles. Nanoparticles increase oil recovery from reservoirs by changing wettability, reducing surface tension, reducing oil viscosity. Metallic nanoparticles (ceramic nanoparticles) have the highest application in increasing the absorption of reservoirs. In this research, changes in the contact levels of oil, water, and stone in the presence and absence of metal oxide nanoparticles have been investigated. The change in the rock's wettability has been analyzed in various concentrations of nanoparticles in the aqueous phase and the governing mechanism for changing the rock solidity in two metal oxide nanoparticles is presented. 4 nanoparticles used in this study are TiO2, NiO, Co3O4, Al2O3 The specimens were then measured by the DSA and the angles were measured and it was observed that the maximum gradient of the graph is related to nickel oxide followed by cobalt oxide and then titanium oxide and the lowest slope to aluminum oxide. In this respect, from this point of view, Nano particles are considered as NiO> Co3O4> TiO2> Al2O3, respectively. So the first suggestion is to select the most suitable nanoparticles of metal oxide, NiO, and for the second position Co3O4, the third and fourth choices are TiO and Al2O3, respectively. Manuscript profile
      • Open Access Article

        6 - Biostratigraphy, conodont biofacies and CAI of Late Devonian-Carboniferous deposits in Anarak section, Central Iran
        ٍٍElahe Sattari Ali Bahrami Hosyen Vaziri moghadam Ali Taheri Sandra Isabella  Kaiser Peter Königshof
        Study of Late Devonian-Carboniferous (Mississippian-Pennsylvanian) conodonts Anarak section (NE Isfahan), Central Iran, led to identifying 67 conodont species belonging to 18 genera. 22 conodont bio-intervals were separated; 15 biozones belong to Late Devonian and 7 b More
        Study of Late Devonian-Carboniferous (Mississippian-Pennsylvanian) conodonts Anarak section (NE Isfahan), Central Iran, led to identifying 67 conodont species belonging to 18 genera. 22 conodont bio-intervals were separated; 15 biozones belong to Late Devonian and 7 biozones belong to carboniferous (Mississippian-Pennsylvanian) time interval. Based on field observation and sedimentological featurs and charactristics the section, subdivided into 5 lithostratigrafic unit. The Color Alteration Index (CAI) reveals the hydrocarbure potential for the Famennian stage of the studied interval Manuscript profile
      • Open Access Article

        7 - Integration of petrophysical and Seismic data: an Attempt to Geological model, Ilam reservoir oil field, Sirri District , in the Persian Gulf.
        Alireza Bashari
        Ilam Formation is deposited at the late Cretaceous (Santonian) in a neritic/pelagic environment. Following the Ilam deposition, a general deepening has occurred and the Gurpi formation (shaly layer) was deposited. Ilam has thickness variation between 75-110m and st More
        Ilam Formation is deposited at the late Cretaceous (Santonian) in a neritic/pelagic environment. Following the Ilam deposition, a general deepening has occurred and the Gurpi formation (shaly layer) was deposited. Ilam has thickness variation between 75-110m and structure has created as a result of upward movement of deep seated salt. Ilam reservoir in this field is regarded as a secondary hydrocarbon potential, and since now, no oil has been produced from this horizon. petrophysical and Seismic interpretation has been done for the Ilam reservoir, the geological models (structural and property models) are generated, with both deterministic and stochastic approaches. The seismic attributes as secondary variables, improved the kriging and Sequential Gaussian Simulation (SGS) algorithm results for modeling of Ilam. This study reveals that Water Saturation is generally high, indicating that Ilam reservoir has low hydrocarbon potential, within the five reservoir potential zones, the zone 5 indicated a good original oil in place potential, especially in the western and central parts of the field. Manuscript profile
      • Open Access Article

        8 - Petrographical factor and Petrophysical parameter: An approach to reservoir evaluation of the Sarvak formation in NW, of the Persian Gulf
        Alireza Bashari
        Sarvak formation is a major oil reservoir in the Persian Gulf. Various nomenclature of the Sarvak formation were applied by different operative oil companies In the northern part of the Persian Gulf. The aim at this study is to harmonize stratigraphical nomenclatu More
        Sarvak formation is a major oil reservoir in the Persian Gulf. Various nomenclature of the Sarvak formation were applied by different operative oil companies In the northern part of the Persian Gulf. The aim at this study is to harmonize stratigraphical nomenclature in this district , as well as to study the reservoir qualities and to asses hydrocarbon accumulations in this area. By using different petrophysical data and integration with geological factor, resulted in revealing three stratigraphy members ( Mishrif, Ahmadi and Mauddud), as well as reservoir qualities variations , in this district. By applying, available petrophsical data, and integration with geological information, various 3D geological maps, ( porosity, water & oil saturation maps etc…) were made. Preliminary assessment of the reservoir potential of the Bahregansar & Hendijan Fields shows , Sarvak formation in these two fields, have a good reservoir qualities, but other part of this district has poor reservoir qualities. This study shows , having high portions of clay mineral in the Sarvak reservoir along with lack of suitable cap rock and poor reservoir qualities , diminished reservoir potentials in this district. Manuscript profile
      • Open Access Article

        9 - Lithostratigraphy and Biostratigraphy of Pabdeh Formation based on planktonic foraminifera in the Ilam dam section (south Ilam_ Zagros sedimentari basin)
        somaye taherizade Mohammad Vahidinia Mohammadhossein mahmoudi gharaii
        Zagros Sedimentary basin is located in the south and southwest of Iran and Pabdeh Formation is one of the most important Cenozoic units of Zagros Sedimentary basin. In addition, Pabdeh Formation is of special importance as one of the source rocks of Zagros Sedimentary b More
        Zagros Sedimentary basin is located in the south and southwest of Iran and Pabdeh Formation is one of the most important Cenozoic units of Zagros Sedimentary basin. In addition, Pabdeh Formation is of special importance as one of the source rocks of Zagros Sedimentary basin. In order to study the Lithostratigraphic and Biostratigraphic rocks of Pabdeh Formation, the section of Ilam dam in the northwest of Zagros sedimentary basin has been selected and sampled. 360 samples were taken, of which 260 washing samples and 100 thin section samples were prepared. Based on the studies performed on these samples, 25 genera and 105 species have been identified in the Ilam dam section. 26 biozones and 2 sub-biozones have been identified based on the biological zoning of Wade et al., 2011 in the Tethys area. Based on the identified biozones, the age of Pabdeh Formation in the Ilam dam section, Middle Danian-Early Aquitanian has been obtained. The deposits of Pabdeh Formation in the section of Ilam dam have a thickness of 764 m (beginning of Pabdeh to the beginning of Kalhor anhydrite) which includes purple shale units (2 Units), marl limestone with lower limestone, cherti limestone, marl limestone with upper limestone. The lower boundary of Pabdeh Formation in this section is conform and continuous with shales and marls of Gurpi Formation but its upper boundary with the gypsums of the Asmari formation is most likely accompanied by a disconform. Manuscript profile