عملکرد تزریق دی اکسیدکربن در مخازن تخلیه شده با بکارگیری الگوریتم های شبکه عصبی
محورهای موضوعی : زمین شناسی مخازن نفت
پویا اسحقی
1
,
کیوان شایسته
2
,
محمد جواد خانی
3
*
1 - گروه مهندسی شیمی دانشکده مهندسی شیمی و نفت دانشگاه صنعتی شریف-تهران-ایران
2 - گروه مهندسی شیمی
3 - گروه مهندسی شیمی دانشکده فنی و مهندسی دانشگاه محقق اردبیلی- اردبیل- ایران
کلید واژه: تزریق¬دی¬اکسیدکربن, مخازن تخلیه شده (ROZ) , ازدیاد برداشت , شبکه عصبی مصنوعی.,
چکیده مقاله :
تزریق دیاکسید کربن (CO₂) در مخازن نفتی، روشی مؤثر برای افزایش برداشت نفت و ذخیرهسازی CO₂ است. در این مطالعه، از شبکه عصبی مصنوعی (ANN) برای پیشبینی میزان بازیابی نفت و ظرفیت ذخیرهسازی CO₂ در مخازن تخلیهشده (ROZ) با توجه به عدم قطعیتهای زمینشناسی و عملیات چاه استفاده شد. دادههای میدانی منطقه Smeaheia، نروژ، شامل ۱۴ ویژگی کلیدی برای بهینهسازی تزریق CO₂ شناسایی گردید. دو مدل شبکه عصبی MLP و RBF در این پژوهش بکار گرفته شد و دقت آنها بهترتیب ۹۱٫۳۶٪ و ۹۴٫۶۳٪ ارزیابی شد. به منظور بهینهسازی ویژگیها و کاهش ابعاد دادهها، الگوریتم گرگ خاکستری استفاده شد که به انتخاب ۱۰ ویژگی مؤثر انجامید. این ویژگیها شامل نفوذپذیری، فشار چاه، حجم منافذ، تراکمپذیری، و نسبت تخلخل به ارتفاع بودند. مدلهای بهینهسازیشده دقت پیشبینی تزریق CO₂ را در مدل MLP به ۹۷٫۴۶٪ و در مدل RBF به ۹۸٫۹۷٪ افزایش دادند. این نتایج نشان میدهد که ترکیب ANN و انتخاب ویژگی بهینه، میتواند بهعنوان ابزاری قدرتمند برای پیشبینی و مدیریت تزریق CO₂ در مخازن نفتی باشد.
Injecting carbon dioxide (CO₂) in oil reservoirs is an effective way to increase oil recovery and CO₂ storage. In this study, an artificial neural network (ANN) was used to predict oil recovery and CO₂ storage capacity in depleted reservoirs (ROZ) with respect to geological and well operation uncertainties. Field data from the Smeaheia region, Norway, including 14 key features for optimizing CO₂ injection were identified. Two neural network models, MLP and RBF, were used in this research and their accuracy was evaluated as 91.36% and 94.63%, respectively. In order to optimize the features and reduce the dimensions of the data, the gray wolf algorithm was used, which led to the selection of 10 effective features. These properties included permeability, well pressure, pore volume, compressibility, and porosity-to-height ratio. The optimized models increased the prediction accuracy of CO₂ injection in the MLP model to 97.46% and in the RBF model to 98.97%. These results show that the combination of ANN and optimal feature selection can be a powerful tool for predicting and managing CO₂ injection in oil reservoirs.
1. Shaya, J., H. Srour, and I. Karamé, Introductory Chapter: An Outline of Carbon Dioxide Chemistry, Uses and Technology. Carbon dioxide chemistry, capture and oil recovery, 2018: p. 1-12.
2. Soeder, D.J., Greenhouse gas sources and mitigation strategies from a geosciences perspective. Advances in Geo-Energy Research, 2021. 5(3).
3. Lin, Q., et al., Technical perspective of carbon capture, utilization, and storage. Engineering, 2022. 14: p. 27-32.
4. Rasool, M., M. Ahmad, and M. Ayoub, Selecting Geological Formations for CO2 Storage: A Comparative Rating System., Sustainability, 15, 6599. 2023.
5. Sanguinito, S., et al., Methodology for estimating the prospective CO2 storage resource of residual oil zones at the national and regional scale. International Journal of Greenhouse Gas Control, 2020. 96: p. 103006.
6. Dordzie, G. and M. Balhoff, A Grand Challenge Update on Improved Recovery From Tight/Shale Reservoirs. Journal of Petroleum Technology, 2024. 76(06): p. 38-42.
7. Ahmadi, P., et al., Experimental and CFD studies on determination of injection and production wells location considering reservoir heterogeneity and capillary number. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 2019. 74: p. 4.
8. Mata, C., et al., Embedding Physics and Data Driven Models for Smart Production Optimization. Field Examples, 2022.
9. Vo Thanh, H., Y. Sugai, and K. Sasaki, Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones. Scientific reports, 2020. 10(1): p. 18204.
10. Song, Y., et al., Application of an artificial neural network in predicting the effectiveness of trapping mechanisms on CO2 sequestration in saline aquifers. International Journal of Greenhouse Gas Control, 2020. 98: p. 103042.
11. Luo, C., et al., A metamodel-assisted evolutionary algorithm for expensive optimization. Journal of Computational and Applied Mathematics, 2011. 236(5): p. 759-764.
12. Wang, H., Y. Jin, and J. Doherty, Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE transactions on cybernetics, 2017. 47(9): p. 2664-2677.
13. An, Z., et al., Accelerating reservoir production optimization by combining reservoir engineering method with particle swarm optimization algorithm. Journal of Petroleum Science and Engineering, 2022. 208: p. 109692.