بررسی هیدرودینامیکی و هیدروشیمی در مخازن نفتی: مخزن آسماری میدان رگ سفید
محورهای موضوعی : زمین شناسی نفتبهمن سلیمانی 1 * , عبداله مؤمنی فیض آباد 2 , موسی ظهراب زاده 3
1 - گروه زمین شناسی نفت دانشکده علوم زمین دانشگاه شهید چمران اهواز-اهواز-ایران
2 - گروه زمينشناسي نفت و حوضه های رسوبی، دانشگاه شهید چمران اهواز
3 - مناطق نفت خیز جنوب
کلید واژه: جریان هیدرودینامیکی, مخزن آسماری, هیدروشیمی, نمودار پایپر,
چکیده مقاله :
شناخت ویژگی¬های هیدرودینامیکی مخازن نفتی در یک میدان می¬تواند در درک رفتاری میدان و میزان بهره¬برداری از آن بسیار مفید باشد. مطالعه کنونی در زمره اولین تلاشها برای بررسی جریان هیدرودینامیکی بوده که در مخزن آسماری میدان رگ¬سفید صورت گرفته است. سطح تماس آب-نفت¬(WOC) در یال شمالی 200 متر بالاتر از یال جنوبی بوده در نتیجه سطح پتانسیومتری آبده به صورت اریب است. نمودارهای پایپر و ترکیبی از اختلاط دو نوع آب شور کلروره سدیک با TDI بالا¬تر با آب تیپ بیکربناته کلسیک- منیزیک با TDI پایین¬تر در مخزن حکایت دارند. منشأ شورابه¬های کلروره سدیک از بخش¬های نمکی سازند گچساران و منشأ آبهای بیکربناته کلسیک- منیزیک از بخش¬های آهکی- دولومیتی سازند آسماری است. این موضوع توسط نمودار عمق در برابر TDI نیز تایید می شود. مطالعه نقشه هیدرودینامیک و خطوط جریان نشان دهنده یک جریان پیوسته از سمت شمال¬شرق به سمت غرب و جنوب¬غربی میدان بصورت جریان نسبتأ قوی در کوهانک غربی و جریان ضعیف¬تری در بخش یال شمالی می¬باشد. اندیس تولید و داده های فشاری در بخش جنوبی- جنوبغربی میدان شرایط بهتری را نشان می دهد. با توجه به ورودی جریان از سمت شمال¬شرق به سمت نواحی غربی و جنوب¬غربی قویاً توصیه می¬گردد حفاری در بخش غربی میدان متمرکز و برنامه تزریق آب در سمت شمال¬شرقی صورت گیرد.
The evaluation of hydrodynamic characteristics can be a useful tool to understand the field behavior and production efficiency. The present study is an attempt to clarify hydrodynamic flow in the Asmari reservoir of the Rage Safid oil field. Water oil contact (WOC) depth is 200m lesser in northern flank than southern part. The results indicated that the aquifer potentiometric surface is tilted. The Piper and Composition diagrams are showing the mixing process of two water types including Cl-Na type with higher TDI and calcic-magnesic bicarbonate type with lower TDI in the reservoir water. The first one is sourced from salt horizons of Gachsaran Formation and the second one is from limestone-dolomitic parts of the Asmari Formation. This result is also verified by TDI to depth plot. Hydrodynamic maps and fluids trends are showing a continuous flow from NE to W-SW of the field. This flow is relatively strong in western and south western part. Generally, production index and pressure data indicate a suitable condition in southern –southwestern part of the field. By considering fluid flux from NE to W-SW it is strictly proposed to focus drilling program in the western part and the water injection program in the north eastern part of the field.
ابراهیمی،ا،1389، بررسی رفتار هیدرودینامیک مخزن آسماری میدان نفتی کرنج و کاربرد آن در توسعه میدان، پایان¬نامه کارشناسی ارشد، دانشگاه شهید چمران.
بتوندی، ا.، 1387، بررسی شیمیایی و ژئوشیمیایی آب¬های سازندی به¬منظور تعیین وضعیت هیدرودینامیک و کاربرد آن در توسعه¬ی میدان پارسی، پایان¬نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات.
چلداوی، ع.، 1385، ليتواستراتيگرافی و بايواستراتيگرافی رسوبات کرتاسه بالايی در ميدان نفتی رگ¬سفيد با تأکيد بر عملکرد فاز کوهزايی ساب¬هرسی¬نين. رساله کارشناسی ارشد، دانشگاه شهيد بهشتی، 224صفحه.
رضایی،¬ا¬،1381، تحلیل ساختاری میدان رگ¬سفید به منظور الگوسازی توزیع شدت شکستگی¬ها در سنگ مخزن سازند آسماری، پایان¬نامه کارشناسی ارشد،دانشگاه آزاد اسلامی واحد تهران شمال.
ظهراب¬زاده، م.، 1385، مطالعه زمين¬شناسی مخزن نفت آسماری ميدان نفتی رگ¬سفيد. گزارش شماره پ-5954، مناطق نفت¬خيز جنوب، 378صفحه.
ظهراب¬زاده،م،1384، تحلیل سیستماتیک شکستگی¬های مخزن آسماری میدان رگ¬سفید،گزارش شماره پ 5718، شرکت ملی مناطق نفت¬خیز جنوب.
قلاوند، ه.، شایسته، م.، سراج، م.، صنوبر لیماکشی، ع.، 1384، مطالعه هیدرودینامیک و هیدروشیمی سازند آسماری در ناحیه فروافتادگی دزفول، 128 صفحه.
قلی¬پور، ع.، 1369، مطالعه وضعیت هیدرودینامیک در سازند آسماری در فروافتادگی دزفول، 84 صفحه.
مطیعی، ه.، 1372. چينه شناسي زاگرس. انتشارات سازمان زمين شناسي کشور، تهران، 536 صفحه.
نظرآقایی، ع.، 1365، دگرشیبی سنومانین¬ـ¬تورونین در میدان رگ¬سفید و میادین مجاور در ارتباط با بالاآمدگی هندیجان. گزارش شماره پ-4006، شرکت ملی مناطق نفت¬خیز جنوب.
نظرآقایی،ع،1361، مطالعه زمین¬شناسی مخزن بنگستان میدان رگ¬سفید، گزارش شماره پ 3795، شرکت ملی مناطق نفت-خیز جنوب.
Adler, F., Chevallier, B., Sacleux, M., Wendebourg, J., 2012. Spotting an “Elephant” using water and seismic waves – an application of hydrodynamic modeling to seismic interpretation: total TechnoHub No3. Geosciences 6–13.
Al-Mahmoud, M.J., 2012. Hydrodynamic aspects of hydrocarbon trapping in the Arabian Gulf (abstract). In: AAPG Conference ‘Hydrocarbon Trapping Mechanisms in the Middle East’, (Istanbul, Turkey).
Alsharhan, A.S., and A.E.M., Nairn, 1997, Sedimentary basins and petroleum geology of the Middle East, Elsevier, 843 p
Biteau, J.-J., Chevallier, B., Coll, V., Crépieux, N., Balusseau, B., Choppin de Janvry, G.,, 2009, The Khuff play related petroleum system between the Qatar arch and the Fars area (abstract). In: International Petroleum Technology Conference, (Doha, Qatar).
Bois, M., de Pazzis, L., Grosjean, Y., 1994. Detection and evaluation of overpressures in the offshore Mahakam (abstract). In: 23rd Indonesian Petroleum Association Annual Convention, (Jakarta, Indonesia).
Chiarelli, A., 1973. Etude des nappes aquifères profondes – contribution de l’hydrogéologie à la connaissance d’un basin sédimentaire et à l’exploration pétrolière. Doctoral thesis. Bordeaux University, France.
Craft, B. C, Hawkins, M. F., 1991, Applied petroleum reservoir engineering, 2nd Ed, prentice hall, 431 p
Dennis, H., Baillie, J., Holt, T., Wessel-Berg, D., 2000. Hydrodynamic activity and tilted oil-water contacts in the North Sea. In: Kittilsen, J.E., Alexander-Marrack, P. (Eds.), Improving the Exploration Process by Learning from the Past. Special Publication 9, Norwegian Petroleum Society, Oslo, pp. 171–185.
Ejeh, C.J., Prosper, P., Woherem, C.E., Olalekan, A., Manjum, D.E., (2020). Effect of hydrodynamic tilting at fluid contacts to reservoir production performance. Results in Engineering, 8(), 100184–. doi:10.1016/j.rineng.2020.100184
Gholi Pour, M.A., 1991, Study of hydrodynamics of Asmary formation at Desful embayment NIOC. Fields, Report no. P-4220
Green, S., Swarbrick, R.E., O'Connor, S.A., 2014. The importance of recognizing hydrodynamics for understanding reservoir volumetrics, field development and well placement. In: OTC-25150-MS, Offshore Technology Conference, (Houston, USA).
Grosjean, Y., Zaugg, P., Gaulier, J.-M., 2009. Burial hydrodynamics and subtle hydrocarbon trap evaluation (abstract). In: International Petroleum Technology Conference N° 13962, (Doha, Qatar).
Güller, C., Thyne, G. D., McCray, J. E. and Turner, A. K., 2002, Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J., 10: 455-474.
Horn, M.K., 2003, Giant fields 1868-2003 (CD-ROM), in Halbouty, M.K., ed., Giant oil and gas fields of the decade 1990-1999: AAPG Memoir 78, ouston, TX, USA, 340 p
Hortle, A., Otto, C., Underschultz, J., 2013. A quality control system to reduce uncertainty in interpreting formation pressures for reservoir and basin pressure system analysis. J. Petrol. Geol. 36, 163–177.
Hubbert, M. K., 1940, The theory of ground water montion, Jour. of Geol. v. 48, p. 785-944.
Hubbert, M. K., 1953, Entrapment of petroleum under hydrodynamic condition. Am. Assoc. Pet. Geol. Bull., Bull. v. 37, p. 1954-2026.
Hussain, M., Ahmed, S. M., Abderrahman, W., 2008, Cluster analysis and quality assessment of logged water at an irrigation project. Eastern Saudi Arabia. J. Environmental Management, 86:297-307.
Kacimov, A. R., Obnosov, Yu. V., 2001, Analytical solutions by hodograph method to hydrodynamic problems for oil and gas traps, J. Hydrology. 254, p. 33-46.
Kalantari, N., Nasseri, H., 2001, Groundwater quality of Ghereso aquifer system in northen Iran. Third conference of groundwater quality, Sheffield University, Sheffield, U.K., 219-225.
Kish Petroleum Engineering Co.2003,Rag-e-Safid Full Field Study & Preparation of Master Development Plan,Tehran,Iran,p1-68
Larkin, R.G., 2010. Hydrodynamic trapping of CO2 Geosequestered in saline aquifers. In: SPE Improved Oil Recovery Symposium, Tulsa USA, SPE-128205-MS.
Levorsen. A. I, 1967, Geology of petroleum, W. H. Freeman and Company San Francisco, 724 p.
Magara, k., 1986, Geological models of petroleum entrapment, Elsevier, London.
Menjoz, A., Lambert, M., Matray, J.M., Water, L.M., Emery, D., Coleman, M.L., 1993. Flow of formation water in the Jurassic of the Paris Basin and its effects. Phil. Trans. Physical Sci. and Eng. 344 (n. 1670), 150–168.
Munn, M. J., 1909, Studeies in the application of anticlinal theory of oil and gas accumulation, Economic Geol., v. 4, p. 14-147.
O'Connor, S.A., Swarbrick, R.E., 2008. Pressure regression, fluid drainage and a hydrodynamically controlled fluid contact in the North sea, lower cretaceous, Britannia sandstone formation. Petrol. Geosci. 14, 115–126.
Petresim Integrated Technologies Ltd Co.,1993, Rag-e-Safid Full Field Study,Cagary,Canada,p1-48
Rich, J. L., 1921, Moving underground water as a primary cause of the migration and accumulation of oil and gas, Econo. Geol. v. 16, No. 6, p. 347-371.
Rich, J. L., 1928, Further notes on the Hydraulic theory of oil and migration and accumulation, AAPG Bull., v. 7, No. 3, p. 213-225.
Rich, J. L., 1931, Function of Carrier beds in long-distance migration of oil, AAPG Bull, v. 15, p. 91-924.
Rich, J. L., 1934, Problems of origin, migration, and accumulation of oil, in W.E. Wrather and F.H. Lahee eds, Problems of Perol. Geology, AAPG Pub., p. 337-345.
Robertson, J., Goulty, N.R., Swarbrick, R.E., 2013. Overpressure distributions in Palaeogene reservoirs of the UK Central North Sea and implications for lateral and vertical fluid flow. Petrol. Geosci. 19, 223–236.
Selley, R. C., 1998, Elements of petroleum geology, 2nd ed.
Sepehr, M., Cosgrove, J. W., 2004. Structural framework of the Zagros Fold–Thrust Belt, Iran. Marine and Petroleum Geology, v. 21, pp. 829–843.
Shirmohammadi N.,Verstfelt P.,Wiley J.,1974,Geology Study of Asmari Reservoir in Rag-e-Safid Field,report p-2451,NISOC,Ahvaz,p90.
Thai Ba, N., Vo Thanh, H., Sugai, Y., Sasaki, K., Nguele, R., Phi Hoang Quang, T., Bao, M.L., & Nguyen Hai, N.L., 2020, Applying the hydrodynamic model to optimize the production for crystalline basement reservoir, X field, Cuu Long Basin, Vietnam. J Petrol Explor Prod Technol 10, 31–46 (2020). https://doi.org/10.1007/s13202-019-00755-w.
Toth, J., 1980, Cross-Formational Gravity-Flow of Groundwater. A Mechanism of Transport and Accumulation of Petroleum (The Generalized Hydraulic Theory of Petroleum Migration); in W.H. Reberts III and R.J. Cordell edits Problems of Petroleum Migration, AAPG Studies in Geology, No. 10, p. 121-167.
Wendebourg, J., Biteau, J.J., Grosjean, Y., 2018, Hydrodynamics and hydrocarbon trapping: Concepts, pitfalls and insights from case studies. Marine and Petroleum Geology, 96, 190-201. https://doi.org/10.1016/j.marpetgeo.2018.05.015.
Wiley J. and Habibi F.,1978,Geology Study of Asmari Reservoir in Rag-e-Safid Field, report p-3543,NISOC, Ahvaz,pp1-29.
www.geosci.usyd.edu.au/research/marinegeophysics/ChapmanConference/AbstractsReceived/AbstractFiles/Badri.pdf.