تلفیق شبکههای عصبی مصنوعی و الگوریتم ردیابی خودکار احتمال گسل نازک شده، جهت شناسایی، تفسیر و استخراج گسلها
محورهای موضوعی :علیرضا غضنفری 1 * , حسین محمدرضائی 2 , حمیدرضا انصاری 3
1 - دانشگاه صنعتی امیرکبیر
2 - شرکت ملی نفت ایران
3 - شرکت نفت کیش
کلید واژه: تفسير گسل رديابی خودکار گسل احتمال گسل شبکه های عصبی مصنوعی نشانگرهای لرزه ای ,
چکیده مقاله :
شناخت گسلها و بررسی سیر تکاملی آنها از اهمیت ویژهای در اکتشاف و توسعه منابع هیدروکربوری برخوردار است. موفقيت در اكتشاف و توسعه ميادین هيدروكربوري، مستلزم شناسايي دقيق سيستمهاي نفتي منطقه بوده و در اين راستا يكي از مهمترين مسائل شناسايي گسلها و نحوه گسترش آنها، به عنوان مجراي اصلي مهاجرت سيال، مخصوصا در نواحي عميقتر ميباشد. گسل ها و شكستگي ها نقش مهمي را در ايجاد بخش هايي با تخلخل و تراوايي زياد و قطع سنگ مخزني و پوشش در مسيرهاي مهاجرت سيال ايفا مي كنند. علاوه بر اینها برای بیشینه کردن برداشت هیدروکربور از مخزن و نیز کاهش خطر پذیری حفاری، ضروری است تا اطلاعات مناسبی از هندسه و طبیعت گسلهای مخزن به دست آورده شود. در این مقاله هدف بررسی کارایی ترکیب شبکه عصبی و الگوریتم ردیابی خودکار احتمال گسل در شناسایی و تفسیر گسلها در داده لرزهای میباشد. ابتدا با استفاده از قابلیت هدایت شیب نرمافزار، فیلتر مورد نظر اولیه که برای شناسایی دقیق شیب ساختارها و پدیدههای موجود در داده میباشد، طراحی و اعمال گردیده است. سپس با طراحی و اعمال فیلترهای مناسب، داده لرزهای بهبود یافته است. پس از آن نشانگرهای لرزهای مناسب برای شناسایی گسلها از داده لرزهای سه بعدی، شناسایی و محاسبه شدهاند. با انتخاب نقاط نمونه برای دو کلاس گسل و غیر گسل از داده، شبکه عصبی نظارت شده با استفاده از نشانگرهای منتخب تشکیل شده و پس از آموزش بهینه شبکه، خروجی مناسب از شبکه ایجاد گردیده است. سپس خروجی شبکه عصبی به عنوان ورودی برای الگوریتم ردیابی خودکار احتمال گسل نازک شده، استفاده شده است. خروجی این قسمت شامل حجم احتمال گسلهای ردیابی شده، ارائه و نمایش داده شده است. در نهایت با استفاده از ابزارهای زیرمجموعه قسمت احتمال گسل، و تنظیمات پارامترهای آن به صورت بهینه، صفحات گسل سه بعدی به صورت خودکار استخراج و تفسیر گردیدهاند.
Fault identification and investigating their evolution is of special importance in the exploration and development of hydrocarbon resources. Success in exploration and development of hydrocarbon fields, need to recognition of petroleum systems and in this regard one of the most important topics is identifying faults and their extension condition as a main fluid migration path, specially in deeper zones. Faults and fractures have crucial role in making high permeable and porous segments and cut reservoir and cap rock in the fluid migration path. In addition, for maximizing the production of hydrocarbon from reservoirs and also for reducing the risk of drilling, it is necessary to gain information about geometry and nature of faults of reservoirs. In this paper, the purpose is investigating the performance of combination of neural networks and Fault Likelihood auto-tracking algorithm for identification and interpretation of faults in seismic data. At first using the Dip-steering feature of software, the early filter for accurate identification of dip of structures in the data, have been designed and applied. Then with designing and applying the appropriate filters, the seismic data have been improved. After that proper seismic attributes for fault identification have been calculated from seismic data. With picking fault and non-fault points from data, a supervised neural network using the selected attributes was formed and after training the network, the appropriate output achieved. Then the output of neural network has been used as a input for Thinned Fault Likelihood auto-tracking algorithm. The output of this part contains a volume of tracked faults. Finally using sub-tools of TFL and optimal setting of parameters, 3D fault planes has been interpreted and extracted.
[1]. LIGTENBERG, J.H., 2005. Detection of fluid migration pathways in seismic data: implications for fault seal analysis. Basin Research, 17(1), 141-153.
[2]. SALAMOFF, S.I., 2006. The use of complex seismic reflection attributes to delineate subsurface fracture networks: an example from Teapot Dome, Wyoming (Doctoral dissertation, Colorado State University).
[3]. HALE, D., 2013. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images. Geophysics, 78(2), O33-O43.
[4]. TANER, M.T., 2001. Seismic attributes. CSEG recorder, 26(7), pp.48-56.
[5]. MARFURT, K.J., KIRLIN, R.L., FARMER, S.L. and BAHORICH, M.S., 1998. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics, 63(4), 1150-1165.
[6]. MARFURT, K.J., SUDHAKER, V., GERSZTENKORN, A., CRAWFORD, K.D. and NISSEN, S.E., 1999. Coherency calculations in the presence of structural dip. Geophysics, 64(1), pp.104-111.
[7]. RANDEN, T., PEDERSEN, S.I. and SONNELAND, L., 2001. Automatic extraction of fault surfaces from three-dimensional seismic data. In SEG Technical Program Expanded Abstracts 2001 (pp. 551-554). Society of Exploration Geophysicists.
[8]. VAN BEMMEL, P.P. and PEPPER, R.E., SCHLUMBERGER TECHNOLOGY CORPORATION, 2000. Seismic signal processing method and apparatus for generating a cube of variance values. U.S. Patent 6,151,555.
[9]. COHEN, I., COULT, N. and VASSILIOU, A.A., 2006. Detection and extraction of fault surfaces in 3D seismic data. Geophysics, 71(4), P21-P27.
[10]. AQRAWI, A.A. and BOE, T.H., 2011. Improved fault segmentation using a dip guided and modified 3D Sobel filter. In SEG Technical Program Expanded Abstracts 2011 (pp. 999-1003). Society of Exploration Geophysicists.
[11]. GERSZTENKORN, A. and MARFURT, K.J., 1999. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics, 64(5), pp.1468-1479.
[12]. NEFF, D.B., GRISMORE, J.R. and LUCAS, W.A., PHILLIPS PETROLEUM COMPANY, 2000. Automated seismic fault detection and picking. U.S. Patent 6,018,498.
[13]. CRAWFORD, M.F. and MEDWEDEFF, D.A., ATLANTIC RICHFIELD COMPANY, 1999. Automated extraction of fault surfaces from 3-D seismic prospecting data. U.S. Patent 5,987,388.
[14]. DORN, G.A., KADLEC, B. and MURTHA, P., 2012. Imaging faults in 3D seismic volumes. In SEG Technical Program Expanded Abstracts 2012 (pp. 1-5). Society of Exploration Geophysicists.
[15]. HUANG, K.Y. and YANG, H.Z., 1992, June. A hybrid neural network for seismic pattern recognition. In Neural Networks, 1992. IJCNN., International Joint Conference on 3, 736-741. IEEE.
[16]. MELDAHL, P., HEGGLAND, R., BRIL, B. and DE GROOT, P., 2001. Identifying faults and gas chimneys using multiattributes and neural networks. The Leading Edge, 20(5), pp.474-482.
[17]. AMINZADEH, F. and DE GROOT, P., 2005. A neural network based seismic object detection technique. In SEG Technical Program Expanded Abstracts 2005 (pp. 775-778). Society of Exploration Geophysicists.
[18]. PEDERSEN, S.I., SCHLUMBERGER TECHNOLOGY CORPORATION, 2007. Image feature extraction. U.S. Patent 7,203,342.
[19]. PEDERSEN, S.I., RANDEN, T.R.Y.G.V.E., SONNELAND, L. and STEEN, O., 2002, May. Automatic 3D fault interpretation by artificial ants. In 64th EAGE Conference & Exhibition.
[20]. PEDERSEN, S.I., SKOV, T., HETLELID, A., FAYEMENDY, P., RANDEN, T. and SONNELAND, L., 2003. New paradigm of fault interpretation. In SEG Technical Program Expanded Abstracts 2003 (pp. 350-353). Society of Exploration Geophysicists.
[21]. GIBSON, D., SPANN, M., TURNER, J. and WRIGHT, T., 2005. Fault surface detection in 3-D seismic data. IEEE Transactions on Geoscience and Remote Sensing, 43(9), 2094-2102.
[22]. KADLEC, B.J., DORN, G.A., TUFO, H.M. and YUEN, D.A., 2008. Interactive 3-D computation of fault surfaces using level sets. Visual Geosciences, 13(1), pp.133-138.
[23]. ADMASU, F., BACK, S. and TOENNIES, K., 2006. Autotracking of faults on 3D seismic data. Geophysics, 71(6), 49-A53.
[24]. SCHULTZ, T., THEISEL, H. and SEIDEL, H.P., 2010. Crease surfaces: From theory to extraction and application to diffusion tensor MRI. IEEE Transactions on Visualization and Computer Graphics, 16(1), 109-119.
[25]. CHOPRA, S. and MARFURT, K.J., 2008. Seismic attributes for stratigraphic feature characterization. In SEG Technical Program Expanded Abstracts 2008 (pp. 1590-1594). Society of Exploration Geophysicists.
[26]. AMINZADEH, F. and DE GROOT, P., 2006. Neural networks and other soft computing techniques with applications in the oil industry. Eage Publications.
[27]. DE GROOT, P., 2006. Interactive multi-volume seismic attribute analysis in OpendTect. Drilling & Exploration World, 15(3).
[28]. AMINZADEH, F. and DE GROOT, P., 2004. Soft computing for qualitative and quantitative seismic object and reservoir property prediction. Part 1: Neural network applications. first break, 22(3).
[29]. TANER, M.T. and KOEHLER, F., 1969. Velocity spectra—digital computer derivation applications of velocity functions. Geophysics, 34(6), 859-881.
[30]. FEHMERS, G.C. and HOCKER, C.F., 2003. Fast structural interpretation with structure-oriented filtering. Geophysics, 68(4), 1286-1293.
[31]. OVEREEM, I., WELTJE, G.J., BISHOP‐KAY, C. and KROONENBERG, S.B., 2001. The Late Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate signal in sediment supply?. Basin Research, 13(3), 293-312.