• Home
  • محیط رسوبی
  • OpenAccess
    • List of Articles محیط رسوبی

      • Open Access Article

        1 - Geochemical Investigation and Effect of Sedimentary Environment Changes on Pabdeh Formation Hydrocarbon Potentiality in Mansuri Oilfield
        بهرام علیزاده ندا جنت مکان هرمز  قلاوند محمد حسین  حیدری فرد
        Pabdeh Formation is one of the most important probable source rocks in Mansuri oifield being under investigation . In this study, hydrocarbon potential of pabdeh formation is evaluated. Also effect of sedimentary environment changes on geo More
        Pabdeh Formation is one of the most important probable source rocks in Mansuri oifield being under investigation . In this study, hydrocarbon potential of pabdeh formation is evaluated. Also effect of sedimentary environment changes on geochemical and hydrocarbon potential variation is studied ,To achieve this , hydrocarbon potential of Pabdeh Formation with Rock Eval Pyrolysis was investigated .Besides that, gas chromatography and gas chromatography-mass spectrometry data were utilized . Based on this study , in the Late Eocene age , relative sea level had raised , while in the Oligocene age, falling in sea level was occurred .Variation in sea level caused Pabdeh Formation to be heterogeneous in hydro carbon potential . Pabdeh Formation in Mansuri oilfield from geochemical aspects is divided into three divisions. Lower ad Upper zones I this formation, have fair (0.5-1%TOC) to good (1-2%TOC0 hydrocarbon potential and contain Kerogen type III. These zones have gas production potential . Middel zone, has very good (2-4%TOC) to excellent (TOC>4%) potential and contains Kerogen type II and III.Middel zone has oil production potential . Rock Eval data as well as thermal history modeling demonstrate that; Pabdeh Formaion is in early oil window, started yielding petroleum since 5-6 million years Manuscript profile
      • Open Access Article

        2 - Geochemical Investigation and Effect of Sedimentary Environment Changes on Pabdeh Formation Hydrocarbon Potentiality in Mansuri Oilfield
        بهرام علیزاده ندا جنت مکان هرمز  قلاوند محمد حسین  حیدری فرد
        Pabdeh Formation is one of the most important probable source rocks in Mansuri oifield being under investigation . In this study, hydrocarbon potential of pabdeh formation is evaluated. Also effect of sedimentary environment changes on geo More
        Pabdeh Formation is one of the most important probable source rocks in Mansuri oifield being under investigation . In this study, hydrocarbon potential of pabdeh formation is evaluated. Also effect of sedimentary environment changes on geochemical and hydrocarbon potential variation is studied ,To achieve this , hydrocarbon potential of Pabdeh Formation with Rock Eval Pyrolysis was investigated .Besides that, gas chromatography and gas chromatography-mass spectrometry data were utilized . Based on this study , in the Late Eocene age , relative sea level had raised , while in the Oligocene age, falling in sea level was occurred .Variation in sea level caused Pabdeh Formation to be heterogeneous in hydro carbon potential . Pabdeh Formation in Mansuri oilfield from geochemical aspects is divided into three divisions. Lower ad Upper zones I this formation, have fair (0.5-1%TOC) to good (1-2%TOC0 hydrocarbon potential and contain Kerogen type III. These zones have gas production potential . Middel zone, has very good (2-4%TOC) to excellent (TOC>4%) potential and contains Kerogen type II and III.Middel zone has oil production potential . Rock Eval data as well as thermal history modeling demonstrate that; Pabdeh Formaion is in early oil window, started yielding petroleum since 5-6 million years Manuscript profile
      • Open Access Article

        3 - Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain
        Mohammad Hossein Saberi Bahman Zarenezhad الهام  اسدی Nasim Rahmani
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important More
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important well in one of the oil fields of Abadan plain has been used. Based on microscopic studies, 13 microfacies have been identified in the form of Four facies tidal flat, lagoon, shoal and open marine for Sarvak Formation deposits in the studied oil field, indicating that the upper part of the Sarvak Formation is deposited in a homoclinal carbonate ramp. Among the identified diagenetic processes, dissolution, cementation, dolomitization, fracturing, compaction, neomorphism, micritization, bioturbation, pyritization, hematitization, phosphatization and silicification are mentioned. Diagenetic processes of Sarvak Formation occurred in three marine, meteoric and burial environments. Among the dissolution and fracturing diagenetic processes, the most important role has been in increasing the reservoir quality, and cementation and compaction have been the most important factors in reducing reservoir quality. Sequence stratigraphy studies identified third order sedimentary sequences of the age of Turonian, Late Cenomanian, and Middle Cenomanian, and studied the facies and diagenetic processes within its framework. Correlation of porosity and permeability data of the core showed that the reservoir quality in this formation was influenced by facies and diagenetic processes. So that the microfacies containing the rudist have the highest reservoir quality. Due to the diagenetic processes, sedimentary and porosity and permeability data, the facies shoal and open marine to the land have the best reservoir quality. Manuscript profile
      • Open Access Article

        4 - Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain
        Arad Kiani Mohammad Hossein Saberi Bahman Zare nejad Elham Asadi Nasim Rahmani
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an importan More
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important well in one of the oil fields of Abadan plain has been used. Based on microscopic studies, 13 microfacies have been identified in the form of Four facies tidal flat, lagoon, shoal and open marine for Sarvak Formation deposits in the studied oil field, indicating that the upper part of the Sarvak Formation is deposited in a homoclinal carbonate ramp. Among the identified diagenetic processes, dissolution, cementation, dolomitization, fracturing, compaction, neomorphism, micritization, bioturbation, pyritization, hematitization, phosphatization and silicification are mentioned. Diagenetic processes of Sarvak Formation occurred in three marine, meteoric and burial environments. Among the dissolution and fracturing diagenetic processes, the most important role has been in increasing the reservoir quality, and cementation and compaction have been the most important factors in reducing reservoir quality. Sequence stratigraphy studies identified third order sedimentary sequences of the age of Turonian, Late Cenomanian, and Middle Cenomanian, and studied the facies and diagenetic processes within its framework. Correlation of porosity and permeability data of the core showed that the reservoir quality in this formation was influenced by facies and diagenetic processes. So that the microfacies containing the rudist have the highest reservoir quality. Due to the diagenetic processes, sedimentary and porosity and permeability data, the facies shoal and open marine to the land have the best reservoir quality. Manuscript profile
      • Open Access Article

        5 - (Biostratigraphy and microfacies of the Asmari Formation in south flank of Mish anticline (northeast of Gachsaran
        Saber Ahmadi Ali seyrafian Hosyen vaziri-Moghadam
        Asmari Formation at the section of the south flank of Mish anticline (northeast of Gachsaran), located 22 km northeast of Basht city, in vicinity village Kalagh ¬Neshin is investigated and has a thickness of 281 meters. In this research, biostratigraphy and microfacies More
        Asmari Formation at the section of the south flank of Mish anticline (northeast of Gachsaran), located 22 km northeast of Basht city, in vicinity village Kalagh ¬Neshin is investigated and has a thickness of 281 meters. In this research, biostratigraphy and microfacies of the Asmari Formation in this section were studied and the results were compared with 5 section of Asmari Formation in similar regions and close to it. By studying on 172 microscopic sections, 3 the biozone for Asmari Formation in the section the study was carried out and the section studied given that is: Lepidocyclina – Operculina – Ditrupa assemblage zone. Archaias asmaricus – Archaias hensoni – Miogypsinoides complanatus assemblage zone. Indeterminate zone. According to the study of benthic foraminifera and biozones, the cut off age is from the late Oligocene (Rupelian-Chattian) to the early Miocene (Aquitanian). Microfacies studies led to identify 10 microfacies and 4 subfacial belonging to the open marine and lagoon (semi-closed and enclosed) environments, which includes the external, intermediate, and interior parts of a hemocalinal ramp. Manuscript profile
      • Open Access Article

        6 - Microfacies analysis, Sedimentary Environment and Sequence Stratigraphy of the Qom Formation in the Naraq area
        Alireza Ashouri Asma Aftabi arani Jahanbakhsh Daneshian Abbas Ghaderi Mohammad Reza Aria Nasab
        Naraq section is located at the South of the Qom sedimentary basin in Central Iran. The study of microfacies sedimentary environments and sequence stratigraphic features of the Qom Formation in this area can help to understand the situation of the Qom sedimentary basin. More
        Naraq section is located at the South of the Qom sedimentary basin in Central Iran. The study of microfacies sedimentary environments and sequence stratigraphic features of the Qom Formation in this area can help to understand the situation of the Qom sedimentary basin. In this study, 111 samples of the Qom Formation in Naraq section in the northwest of Naraq are investigated. Based on field observation and thin-section studies, 6 microfacies related to the lagoon, reef and slope parts of carbonate platform have been recognized.Due to the presence of slope microfacies and skeletal and non-skeletal grains that are transported from the shallow to this environment and the existence of SMF9, bioturbation, Also the presence of barrier / reef sediments, a carbonate shelf depositional environment is suggested for the Qom Formation in Naragh section. In this model, marls of b member of the Qom Formation show more relative depth. Also sequence stratigraphic studies show that the Naraq section is composed of three sedimentary sequences of third- order three types I and one type II sequence boundaries were recognized in this formation. Manuscript profile
      • Open Access Article

        7 - Investigating the role of microfacies, depositional conditions and diagenesis on the quality of the reservoir section, Ilam Formation (Santonian-Campanian) in one of the fields in southwestern Iran, Dezful embayment
        Seyedeh Akram  Jooybari Peyman Rezaei Majid Mehdipour
        The Ilam formation is one of the important carbonate oil reservoirs of the Zagros and Dezful embayment basins. In order to identify the microfacies and depositional conditions and diagenesis processes, 100 microscopic thin sections from one well of this reservoir in on More
        The Ilam formation is one of the important carbonate oil reservoirs of the Zagros and Dezful embayment basins. In order to identify the microfacies and depositional conditions and diagenesis processes, 100 microscopic thin sections from one well of this reservoir in one of the Dezful embayment oil fields were evaluated. Porosity and permeability data were used to check reservoir quality. The petrographic study led to the identification of 9 microfacies belonging to the facies belts of lagoon, barier, middle ramp and outer ramp, which were deposited in the homoclinal ramp environment. The most important diagenesis processes identified in Ilam reservoir include cementation, dissolution, fracture, micriteization, stylolitization, and dolomitization. Based on the qualitative classification of the reservoir and Lucia's petrophysical diagrams, the lagoon facies and the middle ramp have an average reservoir status, and the carbonate barier facies and the outer ramp have a weak reservoir status. The reservoir quality of the lagoon and middle ramp facies is related to the existence of interconnected and channel porosities. Due to strong cementation and the presence of unrelated porosity such as mold porosity, the carbonate barier facies has low permeability and has a poor reservoir status. In general, the Ilam Formation in the studied field is in a weak state in terms of reservoir, which can be important in addition to the facies controllers in relation to the lack of expansion of fracture and dolomitization and the excessive expansion of cementation in these facies. Therefore, the Ilam Formation in the studied field has a weak reservoir performance due to diagenetic processes, despite having more shallow sequences than deep ones. Manuscript profile
      • Open Access Article

        8 - Reconstruction of Asmari Formation Sedimentary Environment in Asmari and Gurpi Anticlines in the oil field of Masjed Soleiman (Southwest of Iran)
        Navab Varnaseri Davood Jahani Nader Kohansal Ghadimvand Mohsen Pourkermani
        In this research, the process of lithological changes and diagenetic processes of Asmari formation with Oligo-Miocene age has been investigated. For this purpose, 400 samples were selected and collected from a section of the Masjid Suleiman oil field and the surface sec More
        In this research, the process of lithological changes and diagenetic processes of Asmari formation with Oligo-Miocene age has been investigated. For this purpose, 400 samples were selected and collected from a section of the Masjid Suleiman oil field and the surface section of the Asmari anticline in the Dezful depression and the Gurpi anticline in the Izeh zone. Petrographic studies revealed 18 sedimentary microfacies that were deposited on a ramp-type carbonate platform. Among the significant diagenetic processes in the region are the process of micritization, bioturbation and the influence of burrowing organisms, cementation (types of cement related to marine, meteoric and burial diagenesis environments), dissolution (meteoric and burial dissolution), dolomitization (in different phases), silicification, pyritization, phosphatization, mechanical compaction, chemical compaction, fracture and porosity. Based on the identification of the sequence boundaries and following the facies depth changes, the carbonate sequence of the Asmari formation in the subsurface section and the Asmari anticline section are introduced in the form of 3 sedimentary sequences of the third order shallowing upwards, which are the former Aquitanian, the late Aquitanian and Bordigalin belong. Among the dominant porosities in the Asmari Formation, we can mention the hole, mold and fracture porosities. Manuscript profile
      • Open Access Article

        9 - Depositional Environmental Analysis of Shally Units of Pabdeh-Gurpi Formation and Clay Minerals Effect on Wellbore Stability, Aghajari Oil Field
        بهمن  سلیمانی Zahra Dehghani
        Shally units are one of the most problematic parameters in the process of drilling oil reservoirs. The current study is related to the instability of the wellbore due to the presence of clay minerals bearing shally units of the Pabdeh-Gurpi formations in Aghajari oilfie More
        Shally units are one of the most problematic parameters in the process of drilling oil reservoirs. The current study is related to the instability of the wellbore due to the presence of clay minerals bearing shally units of the Pabdeh-Gurpi formations in Aghajari oilfield. Investigation and identification of shales were done using the XRF laboratory and NGS logs. The results showed that the NGS method is sensitive and applicable to identify Illite mineral merely. According to Fe2O3 content, the upper part of the oxidant conditions, but towards the Gurpi, is dominated by reduction condition. The role of other elements in the formation of clay minerals was discussed. Based on the amount of iron, manganese and vanadium, the samples are classified as the Quinby_Hunt and Wilde class lll (non-sulfide resuscitation but Eh recovery and medium to low pH). The range of changes in the Th/U ratio (4-1.5) signified an environment with changes from sea to intermediate states. Manuscript profile
      • Open Access Article

        10 - Stratigraphy, facies and depositional conditions of the Asmari Formation (Rupelian-Burdigalian) in the south-eastern folded Zagros, Bandarlengeh embayment (Khamir salt mountain section)
        Peyman Rezaei Seyedeh Akram  Jooybari Abdullah  Najafi
        Asmari Formation (Rupelian-Burdigalian) is one of the most well-known formations in Iran. In order to investigate the stratigraphy and sedimentary environment, a section of this formation was selected in Khamir salt mountain section in Bandarlengeh embayment. In this nu More
        Asmari Formation (Rupelian-Burdigalian) is one of the most well-known formations in Iran. In order to investigate the stratigraphy and sedimentary environment, a section of this formation was selected in Khamir salt mountain section in Bandarlengeh embayment. In this number, 70 limestone microscopic thin sections and 3 marl samples (XRF) were evaluated to identify the microfacies and the sedimentation conditions.The petrographic study led to the identification of 10 microfacies belonging to the facies belts of tidal, lagoon, carbonate bar, open marine, which were deposited in the homoclinal carbonate ramp environment. The composition of marl facies oxides also indicates the presence of carbonate minerals, quartz and clay minerals, which along with field observations and alternating calcareous facies suggest that this facies was deposited in an open marine environment. Finally, it seems that the facies and fossil diversity of the Asmari Formation in the mentioned section is such that during the Aquitanian stage, this formation was located closer to the coast line and during the Rupelian and Chattian-Burdigalian times, it was located at a further distance from the coast line. Manuscript profile