• List of Articles


      • Open Access Article

        1 - Laboratory study of alteration in reservoir rock wettability for the prevention of asphaltene sediment formation using metal oxide Nano-particles
        abdolhamid ansari Sadegh Ameri
        One of the methods of harvesting oil reservoirs is the injection of nanoparticles. Nanoparticles increase oil recovery from reservoirs by changing wettability, reducing surface tension, reducing oil viscosity. Metallic nanoparticles (ceramic nanoparticles) have the high More
        One of the methods of harvesting oil reservoirs is the injection of nanoparticles. Nanoparticles increase oil recovery from reservoirs by changing wettability, reducing surface tension, reducing oil viscosity. Metallic nanoparticles (ceramic nanoparticles) have the highest application in increasing the absorption of reservoirs. In this research, changes in the contact levels of oil, water, and stone in the presence and absence of metal oxide nanoparticles have been investigated. The change in the rock's wettability has been analyzed in various concentrations of nanoparticles in the aqueous phase and the governing mechanism for changing the rock solidity in two metal oxide nanoparticles is presented. 4 nanoparticles used in this study are TiO2, NiO, Co3O4, Al2O3 The specimens were then measured by the DSA and the angles were measured and it was observed that the maximum gradient of the graph is related to nickel oxide followed by cobalt oxide and then titanium oxide and the lowest slope to aluminum oxide. In this respect, from this point of view, Nano particles are considered as NiO> Co3O4> TiO2> Al2O3, respectively. So the first suggestion is to select the most suitable nanoparticles of metal oxide, NiO, and for the second position Co3O4, the third and fourth choices are TiO and Al2O3, respectively. Manuscript profile
      • Open Access Article

        2 - Microfacies, Sedimentary environment and Sequence stratigraphy of Anarak section (Late Devonian-Early Carboniferous), central Iran
        ٍٍElahe Sattari Hosyen vaziri-Moghadam Ali Bahrami Ali Taheri sandra kaiser Peter Koneigshof
        Anarak section in northeast Isfahan, central Iran is evaluated regarding to sedimentary environment and sequence stratigraphy. Field studies and micro-facies analysis led to the identification of 12 micro-facies related to the open marine, the shoal, the lagoon and the More
        Anarak section in northeast Isfahan, central Iran is evaluated regarding to sedimentary environment and sequence stratigraphy. Field studies and micro-facies analysis led to the identification of 12 micro-facies related to the open marine, the shoal, the lagoon and the tidal flat environments. Micro-facieses gradual change, lack of calciturbidite and lack of expanded barrier reef indicate the deposition of a sedimentary interval in a homoclinal ramp environment. Two type 3 sequences were identified by sequence stratigraphic study. Both of these sequences are separable TST and HST packages. The age of first sequence is Late Devonian (Bahram Formation) and its thickness is 42.3 meters and the second sequence with a thickness of 70.7 meters is Late Devonian-Early Carboniferous (Upper part of Bahram Formation and Shishtu2 Formation). The sequence boundary between first and second sequences is the second type boundary due to the lack of evidence for exposure. Manuscript profile
      • Open Access Article

        3 - (Biostratigraphy and microfacies of the Asmari Formation in south flank of Mish anticline (northeast of Gachsaran
        Saber Ahmadi Ali seyrafian Hosyen vaziri-Moghadam
        Asmari Formation at the section of the south flank of Mish anticline (northeast of Gachsaran), located 22 km northeast of Basht city, in vicinity village Kalagh ¬Neshin is investigated and has a thickness of 281 meters. In this research, biostratigraphy and microfacies More
        Asmari Formation at the section of the south flank of Mish anticline (northeast of Gachsaran), located 22 km northeast of Basht city, in vicinity village Kalagh ¬Neshin is investigated and has a thickness of 281 meters. In this research, biostratigraphy and microfacies of the Asmari Formation in this section were studied and the results were compared with 5 section of Asmari Formation in similar regions and close to it. By studying on 172 microscopic sections, 3 the biozone for Asmari Formation in the section the study was carried out and the section studied given that is: Lepidocyclina – Operculina – Ditrupa assemblage zone. Archaias asmaricus – Archaias hensoni – Miogypsinoides complanatus assemblage zone. Indeterminate zone. According to the study of benthic foraminifera and biozones, the cut off age is from the late Oligocene (Rupelian-Chattian) to the early Miocene (Aquitanian). Microfacies studies led to identify 10 microfacies and 4 subfacial belonging to the open marine and lagoon (semi-closed and enclosed) environments, which includes the external, intermediate, and interior parts of a hemocalinal ramp. Manuscript profile
      • Open Access Article

        4 - Microfacies analysis, Sedimentary Environment and Sequence Stratigraphy of the Qom Formation in the Naraq area
        Alireza Ashouri Asma Aftabi arani Jahanbakhsh Daneshian Abbas Ghaderi Mohammad Reza Aria Nasab
        Naraq section is located at the South of the Qom sedimentary basin in Central Iran. The study of microfacies sedimentary environments and sequence stratigraphic features of the Qom Formation in this area can help to understand the situation of the Qom sedimentary basin. More
        Naraq section is located at the South of the Qom sedimentary basin in Central Iran. The study of microfacies sedimentary environments and sequence stratigraphic features of the Qom Formation in this area can help to understand the situation of the Qom sedimentary basin. In this study, 111 samples of the Qom Formation in Naraq section in the northwest of Naraq are investigated. Based on field observation and thin-section studies, 6 microfacies related to the lagoon, reef and slope parts of carbonate platform have been recognized.Due to the presence of slope microfacies and skeletal and non-skeletal grains that are transported from the shallow to this environment and the existence of SMF9, bioturbation, Also the presence of barrier / reef sediments, a carbonate shelf depositional environment is suggested for the Qom Formation in Naragh section. In this model, marls of b member of the Qom Formation show more relative depth. Also sequence stratigraphic studies show that the Naraq section is composed of three sedimentary sequences of third- order three types I and one type II sequence boundaries were recognized in this formation. Manuscript profile
      • Open Access Article

        5 - Geochemical Study and Genetic Classification of Fahlian Reservoir Oil Using Infrared Spectroscopy in the Fields of Southwestern Iran
        Mohammad Ali Sahmoradi Mohammad Hossein Saberi Bahman Zare nejad Ali Chehrazi
        The first step in performing geochemical adaptations is to identify the molecular and hybrid structure of the oil. One way to match the use of infrared spectroscopy is to identify and compare the structure of oil samples. Infrared spectroscopy is a practical method with More
        The first step in performing geochemical adaptations is to identify the molecular and hybrid structure of the oil. One way to match the use of infrared spectroscopy is to identify and compare the structure of oil samples. Infrared spectroscopy is a practical method with easy, low-cost interpretation and reliable results for determining the structure of organic compounds. Also, considering the significant growth of the tendency to develop fast, accurate and reliable analytical methods for industrial applications and also the discovery of new hydrocarbon resources in the sedimentary basin of Abadan plain such as Darkhoein and Yadavaran oil fields in recent years, indicates the need for more comprehensive studies. There is a sedimentary basin in this basin. Based on this, 15 samples of crude oil from Fahlian reservoir were selected and examined in the most important oil fields of this basin, namely Darkhoein (9 samples) and Yadavaran (6 samples) located in southwestern Iran. By dividing the samples by evaluating the crude oil, different analytical goals were achieved. Using infrared spectroscopy, the functional groups in the samples were determined and then the amount of these compounds in different samples was compared with each other. Based on the results of the mass spectrometer, the oils studied in this basin are divided into three families with different genetic characteristics. In this study, it was shown that infrared spectrometer is a fast, reliable and non-destructive analytical option and a complementary or even alternative method of chromatography and biomarkers analysis to perform various scientific and industrial purposes in the oil industry, including quality measurement, Quantity and geochemical evaluation of oil. Manuscript profile
      • Open Access Article

        6 - Hydrodynamic activity in the Mishrif reservoirs: an approach to characterize Sarvak formation , in eastern part of the Persian Gulf
        Ali reza Bashari
        The hydrodynamic activity and its effects on oil water contact of oil fields in Sirri district ( Eastern Part of the Persian Gulf), has been revealed by drilling and coring of third well of Mishrif reservoir, (SiDA1) on 1976. Discovery of Sirri –D1 ( Dena) i More
        The hydrodynamic activity and its effects on oil water contact of oil fields in Sirri district ( Eastern Part of the Persian Gulf), has been revealed by drilling and coring of third well of Mishrif reservoir, (SiDA1) on 1976. Discovery of Sirri –D1 ( Dena) in 1972 and SiD-2 confirm existence of oil only 5 meter at the top of structure. Field development started in 1975 and showed the existence of tilted, oil- water contact along fairly south –north direction with slopes up to 12:1000, particulary on the western flank of structure. Slope and direction of water level of Sirri-C ( Sivand) which is close to Sirri-D (Dena) , contain the same slope in both field, at the eastern border of field. The oil –water contact of Sirr- E, (Alvand) field has been constructed with good accuracy and fair probability in 1978. As a result, this modeling was confirm with actual result after full field development of this field on 2002. An entirely original study has been undertaken on residual oil of core, which permitted to characterize various zone as well as modern and fossil interfaces, and proved Hydrodynamic activity in the Mishrif reservoir in western part of Persian Gulf ( Sirri District). This study was carried out, with an approach to combined reservoir characterization , and revealed accuracy of results after full development of these fields. Manuscript profile