• List of Articles


      • Open Access Article

        1 - Biostratigraphy of the deposits of the Katkoyeh Formation in the Gezoiye section, northwest of Kerman (southeast of Zarand) based on conodont fauna.
        Farzad Poursalehi Ali Bahrami Hamed  Ameri Gustavo Gabriel  Voldman
        The Ordovician marine sedimentary sequences of Iran are located in different structural blocks along the northern margin of Gondwana. In the north of the Kerman Basin, Ordovician sedimentary sequences named Katkoyeh Formation have been introduced, which consist of 70 to More
        The Ordovician marine sedimentary sequences of Iran are located in different structural blocks along the northern margin of Gondwana. In the north of the Kerman Basin, Ordovician sedimentary sequences named Katkoyeh Formation have been introduced, which consist of 70 to 300 meters of siliceous siliceous rocks, one or two thin carbonate horizons in the upper part, and pyroclastic deposits. Traditionally, the Cambrian-Ordovician boundary in the Kerman Basin has been determined between the Hatken Dolomite Member of the Kuhbanan Formation (Late Furongian) and the Lower Shale Member of the Katkuye Formation. However, determining the location of the previous Tremadocine boundary is uncertain because no fossils have been documented from this interval. For the purpose of biostratigraphy of the Katkuye formation in Kerman basin, Gezoye section with an approximate thickness of about 170 meters was selected. In this section, the Katkoyeh Formation is located on the Hatken Dolomite Member and under the Shabjareh Formation sandstones of Silurian age. In the Gezoiye section, due to the action of basalt dikes and intense tectonics in the region, the limestone layers containing fossils have been severely altered, and during three sampling stages, 320 conodonts were recovered from the carbonate horizon of the upper part of this formation, and 3 Genus and 7 species were identified and based on this, three conodont ranges were recorded: 1) Icriodella superba Range Zone (Katian - ? Hirnantian; Late Ordovician), 2) Amorphognathus ordovicicus Range Zone (Katian - Late Ordovician), 3) Amorphognathus superbus Range Zone (Katian - ? Hirnantian; Late Ordovician). Late Ordovician age in the Katkuye formation in the Gezoye section with at least three species of the conodont genus Icriodella (I. superba, I. deflecta, (I. cf. discrete and two species of A. superbus) Amorphognathus, A. ordovicicus) determined and led to the identification of the Katian-?Hirnantian rocks. Manuscript profile
      • Open Access Article

        2 - Stratigraphy, facies and depositional conditions of the Asmari Formation (Rupelian-Burdigalian) in the south-eastern folded Zagros, Bandarlengeh embayment (Khamir salt mountain section)
        Peyman Rezaei Seyedeh Akram  Jooybari Abdullah  Najafi
        Asmari Formation (Rupelian-Burdigalian) is one of the most well-known formations in Iran. In order to investigate the stratigraphy and sedimentary environment, a section of this formation was selected in Khamir salt mountain section in Bandarlengeh embayment. In this nu More
        Asmari Formation (Rupelian-Burdigalian) is one of the most well-known formations in Iran. In order to investigate the stratigraphy and sedimentary environment, a section of this formation was selected in Khamir salt mountain section in Bandarlengeh embayment. In this number, 70 limestone microscopic thin sections and 3 marl samples (XRF) were evaluated to identify the microfacies and the sedimentation conditions.The petrographic study led to the identification of 10 microfacies belonging to the facies belts of tidal, lagoon, carbonate bar, open marine, which were deposited in the homoclinal carbonate ramp environment. The composition of marl facies oxides also indicates the presence of carbonate minerals, quartz and clay minerals, which along with field observations and alternating calcareous facies suggest that this facies was deposited in an open marine environment. Finally, it seems that the facies and fossil diversity of the Asmari Formation in the mentioned section is such that during the Aquitanian stage, this formation was located closer to the coast line and during the Rupelian and Chattian-Burdigalian times, it was located at a further distance from the coast line. Manuscript profile
      • Open Access Article

        3 - Petrographical factor and Petrophysical parameter: An approach to reservoir evaluation of the Sarvak formation in NW, of the Persian Gulf
        Alireza Bashari
        Sarvak formation is a major oil reservoir in the Persian Gulf. Various nomenclature of the Sarvak formation were applied by different operative oil companies In the northern part of the Persian Gulf. The aim at this study is to harmonize stratigraphical nomenclatu More
        Sarvak formation is a major oil reservoir in the Persian Gulf. Various nomenclature of the Sarvak formation were applied by different operative oil companies In the northern part of the Persian Gulf. The aim at this study is to harmonize stratigraphical nomenclature in this district , as well as to study the reservoir qualities and to asses hydrocarbon accumulations in this area. By using different petrophysical data and integration with geological factor, resulted in revealing three stratigraphy members ( Mishrif, Ahmadi and Mauddud), as well as reservoir qualities variations , in this district. By applying, available petrophsical data, and integration with geological information, various 3D geological maps, ( porosity, water & oil saturation maps etc…) were made. Preliminary assessment of the reservoir potential of the Bahregansar & Hendijan Fields shows , Sarvak formation in these two fields, have a good reservoir qualities, but other part of this district has poor reservoir qualities. This study shows , having high portions of clay mineral in the Sarvak reservoir along with lack of suitable cap rock and poor reservoir qualities , diminished reservoir potentials in this district. Manuscript profile
      • Open Access Article

        4 - Reservoir characteristics prediction using the geostatistical model. Case study: Bangestan reservoir, Ziloi Field, SW Iran
        Somaieh Khoram abadi Bahman Soleimani Hussin Sheikhzadeh
        The geostatistical model is considered as a useful tool for predicting the oil potential of reservoirs. In the present study, an attempt is made to review the importance of the geostatistical model in the reservoir characteristics, to model and examine the changes in th More
        The geostatistical model is considered as a useful tool for predicting the oil potential of reservoirs. In the present study, an attempt is made to review the importance of the geostatistical model in the reservoir characteristics, to model and examine the changes in the petrophysical parameters of the Bangestan reservoir in the Ziloi field despite the limited number of boreholes. This carbonate reservoir consists of Ilam, Surgah and Sarvak formations and was divided into eight zones. In the modeling process, the information required for the 3D model, including geophysical interpretations, well description information, and 2D maps along with their quality control (QC), were entered into the RMS software. The construction model was prepared based on the top levels of the structures and the depth information of the wells entering the reservoir. These data were used indirectly or directly in software with high grading capability to create levels. The depth level map of the top of Ilam Formation was entered into the model as an interpretation level, digitalization and as a base contour map. Isochore maps of other zones were prepared using the depths of wells entering different parts of the reservoir. The prediction of the distribution pattern of changes in the petrophysical features of the reservoir was prepared based on geostatistical methods, average porosity maps, and water saturation. According to the results of the modeling, it was revealed that the Ziloi field has a structural complexity, caused the heterogeneity of the reservoir and increased the risk of predicting the behavior of the reservoir. Comparison of reservoir zones showed that zone 3 has better hydrocarbon potential than other zones. One of the effective factors to improve its reservoir quality is the dolomitization process. Changes in the distribution values of water saturation and porosity showed that the reservoir properties improve from the southeast to the northwest of the field. Manuscript profile
      • Open Access Article

        5 - Reconstruction of Asmari Formation Sedimentary Environment in Asmari and Gurpi Anticlines in the oil field of Masjed Soleiman (Southwest of Iran)
        Navab Varnaseri Davood Jahani Nader Kohansal Ghadimvand Mohsen Pourkermani
        In this research, the process of lithological changes and diagenetic processes of Asmari formation with Oligo-Miocene age has been investigated. For this purpose, 400 samples were selected and collected from a section of the Masjid Suleiman oil field and the surface sec More
        In this research, the process of lithological changes and diagenetic processes of Asmari formation with Oligo-Miocene age has been investigated. For this purpose, 400 samples were selected and collected from a section of the Masjid Suleiman oil field and the surface section of the Asmari anticline in the Dezful depression and the Gurpi anticline in the Izeh zone. Petrographic studies revealed 18 sedimentary microfacies that were deposited on a ramp-type carbonate platform. Among the significant diagenetic processes in the region are the process of micritization, bioturbation and the influence of burrowing organisms, cementation (types of cement related to marine, meteoric and burial diagenesis environments), dissolution (meteoric and burial dissolution), dolomitization (in different phases), silicification, pyritization, phosphatization, mechanical compaction, chemical compaction, fracture and porosity. Based on the identification of the sequence boundaries and following the facies depth changes, the carbonate sequence of the Asmari formation in the subsurface section and the Asmari anticline section are introduced in the form of 3 sedimentary sequences of the third order shallowing upwards, which are the former Aquitanian, the late Aquitanian and Bordigalin belong. Among the dominant porosities in the Asmari Formation, we can mention the hole, mold and fracture porosities. Manuscript profile
      • Open Access Article

        6 - Lithostratigraphy and Biostratigraphy of Pabdeh Formation based on planktonic foraminifera in the Ilam dam section (south Ilam_ Zagros sedimentari basin)
        somaye taherizade Mohammad Vahidinia Mohammadhossein mahmoudi gharaii
        Zagros Sedimentary basin is located in the south and southwest of Iran and Pabdeh Formation is one of the most important Cenozoic units of Zagros Sedimentary basin. In addition, Pabdeh Formation is of special importance as one of the source rocks of Zagros Sedimentary b More
        Zagros Sedimentary basin is located in the south and southwest of Iran and Pabdeh Formation is one of the most important Cenozoic units of Zagros Sedimentary basin. In addition, Pabdeh Formation is of special importance as one of the source rocks of Zagros Sedimentary basin. In order to study the Lithostratigraphic and Biostratigraphic rocks of Pabdeh Formation, the section of Ilam dam in the northwest of Zagros sedimentary basin has been selected and sampled. 360 samples were taken, of which 260 washing samples and 100 thin section samples were prepared. Based on the studies performed on these samples, 25 genera and 105 species have been identified in the Ilam dam section. 26 biozones and 2 sub-biozones have been identified based on the biological zoning of Wade et al., 2011 in the Tethys area. Based on the identified biozones, the age of Pabdeh Formation in the Ilam dam section, Middle Danian-Early Aquitanian has been obtained. The deposits of Pabdeh Formation in the section of Ilam dam have a thickness of 764 m (beginning of Pabdeh to the beginning of Kalhor anhydrite) which includes purple shale units (2 Units), marl limestone with lower limestone, cherti limestone, marl limestone with upper limestone. The lower boundary of Pabdeh Formation in this section is conform and continuous with shales and marls of Gurpi Formation but its upper boundary with the gypsums of the Asmari formation is most likely accompanied by a disconform. Manuscript profile