• Home
  • Mohammad Hossein Saberi
  • OpenAccess
    • List of Articles Mohammad Hossein Saberi

      • Open Access Article

        1 - Integrated different methods (Lorenz, Lucia, Amaefule) in rock types and flow units identification of lower Miocene Razak Formation at Sarkhun gas field, Zagros basin, SE Iran
        Mohammad Hossein Saberi Milad Karampour.Hasanvand Seyed Ali Moallemi
        One of the most important stages in the hydrocarbon reservoirs morphology is the identification of rocky type. In order to construct an efficient and correct model of a hydrocarbon reservoir, identification of rock types is one of the essential parameters in reservoir m More
        One of the most important stages in the hydrocarbon reservoirs morphology is the identification of rocky type. In order to construct an efficient and correct model of a hydrocarbon reservoir, identification of rock types is one of the essential parameters in reservoir modeling. and its consequences are found in the identification of rock types. The aim of this study is to compare different methods of determining rocky type and understanding the hydraulic flow unit distributions in order to assess the quality of reservoir of Razak Formation with sandstone carbonate lithology, marl and anhydrite to San Oligocene to lower Miocene. In this research, the experimental results of porosity, permeability and capillary pressure curves for 84 samples with porous microscopic sections Related to a 46-meter drill bit in one of the important fields of southeast of Iran were analyzed. The petrographic studies were conducted to investigate the changes of the features in the reservoir section with Razak formation and resulted in the identification of eight microfeatures( The MF1 packstone and Wackstone are at a depth of 2829 meters- The MF2 is the grinstone packstone at a depth of 2844 meters-the MF3 is the wackstone mudstone at a depth 2856 meters-the MF4 is the grinstone at a depth 2859meters –the MF5 is the mudstone wackstone are at a depth2848 meters – the MF6 mudstone at a depth of 2838 meters the MF7is the wackstone mudstone at a depth 2840 meters- The MF8 is a wackstone with sandstone depth of 2831) meters- in open Marin lagoon and fluvial clastic systems. In order to determine the rocky species and assess the flow units based on the core analysis results, four petrophysical classes were identified using the Lucia method. The petrophysical category number 1 has the best reservoir quality and the fourth category has the weakest reservoir quality. Also, the flow units were identified and separated using Amalufee and Lorenz's methods. Based on the Amalufee method, in the reservoir section of the Razak Formation, seven flow units have been identified, the sixth and seventh stream units were the best and one was the weakest reservoir segments among the seven units of the flow. Also, based on the analysis of capillary curves, six rocky species were distinguished, based on which the rocky type number five and six have the best quality. Also, using Geology software cross-sections, it was revealed that the main part of this section is sandstone with clay. The presence of gas in the formation causes cross-sectional deformation of samples to the northwest cross-platform. Finally, with the combination of various data, it was found the fossil formation in the study area has five types of rock in which the number 4 rock has the best quality of reservoir and rock number 5 has the largest reservoir and the unit number six is the best. Manuscript profile
      • Open Access Article

        2 - Studying Maturity and Migration Routes Using Two-Dimensional Modeling in a number of Dezful Dam Oilfields
        Ashkan Maleki Seyed Ali Moallemi Mohammad Hossein Saberi Mohammad Hassan Jazayeri
        To the southwest of Iran there are large reservoirs of oil and gas including Jurassic and Cretaceous carbonates, with good source rocks in the succession of the Early Cretaceous and Jurassic. The purpose of this study was to investigate the production, migration and cha More
        To the southwest of Iran there are large reservoirs of oil and gas including Jurassic and Cretaceous carbonates, with good source rocks in the succession of the Early Cretaceous and Jurassic. The purpose of this study was to investigate the production, migration and characterization of Pabdeh, Kazhdumi, Garru and Serglu source rocks in the study area. For this purpose, burial history and one-dimensional thermal modeling in four wells and two-dimensional modeling in one section for the study area were evaluated using Openuploo software to determine the maturity of layers and hydrocarbon outflow. Comparison of measured vitrinite temperature and reflectance values with model results was used for model calibration. The results of one-dimensional modelling of the burial and thermal history in this study show that the Sergloo, Grove and Kazhdumi formations have reached maturity and have had hydrocarbon outflow, but the Pabdeh Formation has not reached sufficient maturity for hydrocarbon maturation and production. The results of migration model in the studied section show that the two Early Cretaceous and Middle Cretaceous hydrocarbon systems were separated by Kazhdumi Formation and therefore hydrocarbon migration in deeper layers of Kazhdumi was mostly lateral to Abadan plain. The hydrocarbon produced from the Kazhdumi Formation, in addition to ornithologically rearing the upper layers, migrated to the Ilam and Sarvak layers due to the general slope of the layers laterally and toward the Abadan plain. In general, the process of maturation of source rocks decreased from east to west of the study area. Manuscript profile
      • Open Access Article

        3 - Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain
        Mohammad Hossein Saberi Bahman Zarenezhad الهام  اسدی Nasim Rahmani
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important More
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important well in one of the oil fields of Abadan plain has been used. Based on microscopic studies, 13 microfacies have been identified in the form of Four facies tidal flat, lagoon, shoal and open marine for Sarvak Formation deposits in the studied oil field, indicating that the upper part of the Sarvak Formation is deposited in a homoclinal carbonate ramp. Among the identified diagenetic processes, dissolution, cementation, dolomitization, fracturing, compaction, neomorphism, micritization, bioturbation, pyritization, hematitization, phosphatization and silicification are mentioned. Diagenetic processes of Sarvak Formation occurred in three marine, meteoric and burial environments. Among the dissolution and fracturing diagenetic processes, the most important role has been in increasing the reservoir quality, and cementation and compaction have been the most important factors in reducing reservoir quality. Sequence stratigraphy studies identified third order sedimentary sequences of the age of Turonian, Late Cenomanian, and Middle Cenomanian, and studied the facies and diagenetic processes within its framework. Correlation of porosity and permeability data of the core showed that the reservoir quality in this formation was influenced by facies and diagenetic processes. So that the microfacies containing the rudist have the highest reservoir quality. Due to the diagenetic processes, sedimentary and porosity and permeability data, the facies shoal and open marine to the land have the best reservoir quality. Manuscript profile
      • Open Access Article

        4 - Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain
        Arad Kiani Mohammad Hossein Saberi Bahman Zare nejad Elham Asadi Nasim Rahmani
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an importan More
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important well in one of the oil fields of Abadan plain has been used. Based on microscopic studies, 13 microfacies have been identified in the form of Four facies tidal flat, lagoon, shoal and open marine for Sarvak Formation deposits in the studied oil field, indicating that the upper part of the Sarvak Formation is deposited in a homoclinal carbonate ramp. Among the identified diagenetic processes, dissolution, cementation, dolomitization, fracturing, compaction, neomorphism, micritization, bioturbation, pyritization, hematitization, phosphatization and silicification are mentioned. Diagenetic processes of Sarvak Formation occurred in three marine, meteoric and burial environments. Among the dissolution and fracturing diagenetic processes, the most important role has been in increasing the reservoir quality, and cementation and compaction have been the most important factors in reducing reservoir quality. Sequence stratigraphy studies identified third order sedimentary sequences of the age of Turonian, Late Cenomanian, and Middle Cenomanian, and studied the facies and diagenetic processes within its framework. Correlation of porosity and permeability data of the core showed that the reservoir quality in this formation was influenced by facies and diagenetic processes. So that the microfacies containing the rudist have the highest reservoir quality. Due to the diagenetic processes, sedimentary and porosity and permeability data, the facies shoal and open marine to the land have the best reservoir quality. Manuscript profile
      • Open Access Article

        5 - Geochemical Study and Genetic Classification of Fahlian Reservoir Oil Using Infrared Spectroscopy in the Fields of Southwestern Iran
        Mohammad Ali Sahmoradi Mohammad Hossein Saberi Bahman Zare nejad Ali Chehrazi
        The first step in performing geochemical adaptations is to identify the molecular and hybrid structure of the oil. One way to match the use of infrared spectroscopy is to identify and compare the structure of oil samples. Infrared spectroscopy is a practical method with More
        The first step in performing geochemical adaptations is to identify the molecular and hybrid structure of the oil. One way to match the use of infrared spectroscopy is to identify and compare the structure of oil samples. Infrared spectroscopy is a practical method with easy, low-cost interpretation and reliable results for determining the structure of organic compounds. Also, considering the significant growth of the tendency to develop fast, accurate and reliable analytical methods for industrial applications and also the discovery of new hydrocarbon resources in the sedimentary basin of Abadan plain such as Darkhoein and Yadavaran oil fields in recent years, indicates the need for more comprehensive studies. There is a sedimentary basin in this basin. Based on this, 15 samples of crude oil from Fahlian reservoir were selected and examined in the most important oil fields of this basin, namely Darkhoein (9 samples) and Yadavaran (6 samples) located in southwestern Iran. By dividing the samples by evaluating the crude oil, different analytical goals were achieved. Using infrared spectroscopy, the functional groups in the samples were determined and then the amount of these compounds in different samples was compared with each other. Based on the results of the mass spectrometer, the oils studied in this basin are divided into three families with different genetic characteristics. In this study, it was shown that infrared spectrometer is a fast, reliable and non-destructive analytical option and a complementary or even alternative method of chromatography and biomarkers analysis to perform various scientific and industrial purposes in the oil industry, including quality measurement, Quantity and geochemical evaluation of oil. Manuscript profile