• Home
  • bahman Zarenezhad
  • OpenAccess
    • List of Articles bahman Zarenezhad

      • Open Access Article

        1 - Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain
        Arad Kiani Mohammad Hossein Saberi Bahman Zare nejad Elham Asadi Nasim Rahmani
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an importan More
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important well in one of the oil fields of Abadan plain has been used. Based on microscopic studies, 13 microfacies have been identified in the form of Four facies tidal flat, lagoon, shoal and open marine for Sarvak Formation deposits in the studied oil field, indicating that the upper part of the Sarvak Formation is deposited in a homoclinal carbonate ramp. Among the identified diagenetic processes, dissolution, cementation, dolomitization, fracturing, compaction, neomorphism, micritization, bioturbation, pyritization, hematitization, phosphatization and silicification are mentioned. Diagenetic processes of Sarvak Formation occurred in three marine, meteoric and burial environments. Among the dissolution and fracturing diagenetic processes, the most important role has been in increasing the reservoir quality, and cementation and compaction have been the most important factors in reducing reservoir quality. Sequence stratigraphy studies identified third order sedimentary sequences of the age of Turonian, Late Cenomanian, and Middle Cenomanian, and studied the facies and diagenetic processes within its framework. Correlation of porosity and permeability data of the core showed that the reservoir quality in this formation was influenced by facies and diagenetic processes. So that the microfacies containing the rudist have the highest reservoir quality. Due to the diagenetic processes, sedimentary and porosity and permeability data, the facies shoal and open marine to the land have the best reservoir quality. Manuscript profile
      • Open Access Article

        2 - Geochemical Study and Genetic Classification of Fahlian Reservoir Oil Using Infrared Spectroscopy in the Fields of Southwestern Iran
        Mohammad Ali Sahmoradi Mohammad Hossein Saberi Bahman Zare nejad Ali Chehrazi
        The first step in performing geochemical adaptations is to identify the molecular and hybrid structure of the oil. One way to match the use of infrared spectroscopy is to identify and compare the structure of oil samples. Infrared spectroscopy is a practical method with More
        The first step in performing geochemical adaptations is to identify the molecular and hybrid structure of the oil. One way to match the use of infrared spectroscopy is to identify and compare the structure of oil samples. Infrared spectroscopy is a practical method with easy, low-cost interpretation and reliable results for determining the structure of organic compounds. Also, considering the significant growth of the tendency to develop fast, accurate and reliable analytical methods for industrial applications and also the discovery of new hydrocarbon resources in the sedimentary basin of Abadan plain such as Darkhoein and Yadavaran oil fields in recent years, indicates the need for more comprehensive studies. There is a sedimentary basin in this basin. Based on this, 15 samples of crude oil from Fahlian reservoir were selected and examined in the most important oil fields of this basin, namely Darkhoein (9 samples) and Yadavaran (6 samples) located in southwestern Iran. By dividing the samples by evaluating the crude oil, different analytical goals were achieved. Using infrared spectroscopy, the functional groups in the samples were determined and then the amount of these compounds in different samples was compared with each other. Based on the results of the mass spectrometer, the oils studied in this basin are divided into three families with different genetic characteristics. In this study, it was shown that infrared spectrometer is a fast, reliable and non-destructive analytical option and a complementary or even alternative method of chromatography and biomarkers analysis to perform various scientific and industrial purposes in the oil industry, including quality measurement, Quantity and geochemical evaluation of oil. Manuscript profile