ارزیابی شرایط محیط رسوبگذاری نهشته های آواری پلیوسن میانی-پلئیستوسن (سازند بختیاری) بر مبنای ویژگی های سنگ رخساره ای در جنوب خاوری زاگرس چین خورده،شمال شهر بندرعباس
محورهای موضوعی : رسوب شناسی و تحلیل حوضه های رسوبیپيمان رضائي 1 * , سیده اکرم جویباری 2 , شهربان محمدزاده شمیلی 3
1 - دانشگاه هرمزگان
2 - دکتری رسوب شناسی و سنگ شناسی رسوبی دانشگاه هرمزگان، بندرعباس
3 - 3- کارشناس ارشد رسوب شناسی و سنگ شناسی رسوبی، گروه زمین شناسی، دانشکده علوم، دانشگاه هرمزگان
کلید واژه: سازند بختیاری, سنگ رخساره, شرایط ته نشینی, زاگرس چین خورده, بندرعباس,
چکیده مقاله :
سازند بختیاری معرف بازه زمانی پلیوسن میانی- پلئیستوسن در پهنه رسوبی ساختاری زاگرس چین خورده است. نهشته های آواری این سازند در محدوده شمال شهر بندرعباس دارای رخنمون های گسترده ی است. به منظور مطالعه سازند بختیاری از دیدگاه زمین شناسی رسوبی، سه برش از این سازند درشمال باختری شهر بندرعباس(نیروگاه برق گنو، جنوب شهرک تازیان پایین، جنوب شهرک مروارید) انتخاب گردید. از این برش ها 50 نمونه برای بررسی های میکروسکوپی و 6 نمونه برای شناسایی کانی های سنگین برداشت شد. در هر سه برش سازند بختیاری شامل تناوبی از کنگلومرا، ماسه سنگ و مقداری گلسنگ می باشد. این سازند در منطقه مورد مطالعه، با مرزی از نوع ناپیوستگی فرسایشی بر روی سازند آغاجاری قرار گرفته است. مرز بالایی سازند بختیاری با نهشته های عهد حاضر نیز از نوع ناپیوستگی فرسایشی است. بررسی های صحرایی و آزمایشگاهی منجر به شناسایی پتروفاسیس های دانه درشت(کنگلومرای گل پشتیبان و دانه پشتیبان)، دانه متوسط(ماسه سنگ کالک لیتایتی)، دانه ریز(گلسنگی) و پنج عنصر ساختاری(GB, CH, SB ,GH ,FF) در این سازند شده است. نتایج این پژوهش نشان می دهد که نهشته های سازند بختیاری در شمال باختری بندرعباس در یک رودخانه بریده بریده دور از منشا در انتهای یک مخروط افکنه بجای گذاشته شده اند. مجموعه کانی های سنگین شناسایی شده در این توالی دارای دو منشا توالی های سری نمکی هرمز و پهنه سنندج-سیرجان هستند که از چند چرخه رسوبی تاثیر پذیرفته اند. مجموعه ویژگی های سنگ رخساره های سازند بختیاری، تاییدی بر پویایی زمین ساختی انتهای دوران نوزیستی در بازه زمانی پلیوسن میانی- پلئیستوسن به ویژه رویداد زمین ساختی بختیارین می باشد که به تشدید شرایط قاره ای در گستره مورد مطالعه منجر گردیده است.
The Bakhtiari Formation represents the Middle Pliocene-Pleistocene time period in the folded Zagros structural sedimentary zone. Debris deposits of this formation have wide outcrops in the northern area of Bandar Abbas city. In order to study the Bakhtiari formation from the point of view of sedimentary geology, three sections of this formation were selected in the northwest of Bandar Abbas city (Genow Power Plant, South of town Down Tazeyan, South of town Morvarid). From these sections, 50 samples were taken for microscopic examination and 6 samples were taken to identify heavy minerals. In all three sections, the Bakhtiari Formation includes an interval of conglomerate, sandstone and some mudstones. In the studied area, this formation is placed on the Aghajari formation with an erosional discontinuity boundary. The upper border of the Bakhtiari Formation with Quaternary deposits is also of erosional discontinuity. Field and laboratory investigations led to the identification of coarse-grained petrofacies (mud-supported conglomerate and grain-supported), medium-grained (calclitite sandstone), fine-grained (mudstone) and five structural elements (GB, CH, SB, GH, FF) has been. The results of this research show that the deposits of the Bakhtiari Formation in the north west of Bandar Abbas has been deposit in a braided river far from origin at the end of an alluvial fan. The set of heavy minerals identified in this sequence have two origins, Hormuz Salt Series and Sanandaj-Sirjan Zone, which have been affected by several sedimentary cycles. The set of petrofacies features of the Bakhtiari Formation is a confirmation of the tectonic dynamics of the end of the Cenozoic era in the middle Pliocene-Pleistocene time frame, especially the Bakhtyari tectonic event, which has led to the intensification of continental conditions in the studied area.
آقانباتی، ع.1385. زمین شناسی ایران. انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، 586 ص.
پورسلطانی، م. 1400. پتروگرافی و تاریخچة دیاژنتیکی ماسه سنگ های سازند شوریجه )کیمریجین پسین هاتریوین( - در برش اسطرخی، حوضة رسوبی کپه داغ، شمال شرق ایران، پژئهش های چینه نگاری و رسوب شناسی، سال 37، شماره 83، ص 119-146.
پورسلطانی، م.، کارگر، م. 1390. آنالیز رسوبات دانه درشت ژوراسیک میانی در بخش شرقی حوضه رسوبی کپه داغ، ایران، نشریه علمی پژوهشی رخسارههاي رسوبی شماره4، 135-150.
رضائی، پ. فریدی،پ، نجفی،ه. 1395. سنگ رخساره ها و شرایط ته نشینی سازند کهریزک(پلیستوسن میانی-پسین) در خاور تهران. دوفصلنامه کواترنری ایران، دوره 2، شماره4، ص 393-403.
شرکت سهامی آب منطقه ای هرمزگان، مطالعات بههنگام سازي اطلس منابع آب حوضه آبريز رودخانههاي كل، مهران و جزاير خليج فارس، ، تابستان 1390.
قاسمی، م.، آقانباتی، ع.، سعیدی، ع. 1402. رویدادهای کوهزایی و خشکی زایی در ایران، فصلنامع علمی علوم زمین، دوره 33، شماره 1، ص 87-106.
لاسمی، ی.، رضائی،پ.1381. بررسی واحدهای سنگ چینه ای، رخساره ها و محیط های رسوبی «گروه بیدو» در برش فیض آباد شمال کرمان، نشریه علوم زمین، دوره 11، شماره 43-44، ص 68-79.
محمدی، ا. عامری،ح. 1400. رخسارهها، محیط رسوبی و مدل رسوبگذاری سازند قم در شمال آباده (حوضه پیش کمان سنندج ـ سیرجان)، دوفصلنامه رخساره های رسوبی، دوره 14، شماره 1، چاپ آنلاین.
هاشمی عزیزی،ح.، رضائی، پ.، عسگری،ح. بازسازی شرایط تهنشینی نهشتههای آواری پالئوسن (سازند کرمان) در شمال شرق ایران مرکزی (گستره کاشمر) بر مبنای ویژگیهای سنگرخسارهای و رخسارههای میکروسکوپی، دو فصلنامه رسوب شناسی کاربردی، چاپ آنلاین.
Aghababaei, A., Rahimi, B., Ghaemi, F., Moussavi-Harami, R., Motamedi, H., & Zadeh, P. G. (2024). Tectonostratigraphy of the Upper Jurassic-Lower Cretaceous siliciclastic (Shurijeh Formation) in the eastern Kopeh Dagh fold and thrust belt, Iran. Marine and Petroleum Geology, 164, 106683.
Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran: Reply. Canadian Journal of Earth Sciences, 18(11), 1764-1766.
Boggs S. 1992. Sedimentary Petrology. Blackwell Scientific Publications.
Collinson, J., & Mountney, N. (2019). Sedimentary structures. Liverpool University Press.
Critelli, S., & Criniti, S. (2021). Sandstone petrology and provenance in fold thrust belt and foreland basin system. In
Sedimentary petrology-implications in petroleum industry (pp. 1-15). Intech Open Access Publisher Janeza Trdine 9, Rijeka, Croatia.
Dépret, T., Gautier, E., Thommeret, N., Piégay, H., Virmoux, C., Hooke, J., & Grancher, D. (2023). A multi-spatiotemporal
scale strategy to evaluate factors controlling pebble mobility and its interactions with bedforms in a lowland gravel-bed river. Catena, 223, 106882.
Díaz, M., & Marenssi, S. A. (2020). Using sandstone and conglomerate petrofacies to unravel multiple provenance areas in broken-foreland basins: The Vinchina Formation (Miocene, NW Argentina) as a study case. Journal of South American Earth Sciences, 100, 102541.
Douglas, w,l; McConchie, Champan. Hall.,1937. Practical Sedimentology
Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J., & Amini, A. (2008). Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics, 451(1-4), 170-185.
Fakhari, M., Hosseini,M, H 1994. bandar abbas geological compilation. islamic azad university, 1p.
Finthan, B., Mamman, Y. D., & Valdon, Y. B. (2023). Facies association and sequence stratigraphic analysis of the lower Cretaceous Bima Formation in Yola arm of the Upper Benue Trough, Northeastern Nigeria. Journal of African Earth Sciences, 198, 104773.
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin, Texas, 182p.
Gagnon, J.F., Waldron, J. W.F., 2010. Sedimentation styles and depositional processes in a Middle to Late Jurassic slope environment, Bowser Basin, northwestern British Columbia, Canada, Marine and Petroleum Geology, (In press).
Gao, C., Boreham, S., Preece, R.C., Gibbard, P.L., & Briant, R.M., 2007. Fluvial response to rapid climate change during the Devensian (Weichselian) Late glacial in the River Great Ouse, southern England, UK. Sedimentary Geology, 202: 193-210. Ghorbani, M. (2019). Lithostratigraphy of Iran (p. 296). Cham: Springer.
Ghoshal, K., Mazumder, B.S., & Purkait, B., 2010. Grain-size distributions of bed load: Inferences from flume experiments using heterogeneous sediment beds. Sedimentary Geology, 223: 1-14.
Gibling, M. R., Jia, R., Gastaldo, R. A., Neveling, J., & Rochín-Bañaga, H. (2023). Braided-river architecture of the Triassic Swartberg Member, Katberg Formation, South Africa: assessing age, fluvial style, and paleoclimate after the End-Permian Extinction. Journal of Sedimentary Research.
Halimeh Hashemi Azizi, S., & Rezaee, P. (2014). Lithostratigraphy and Lithofacies of the Siliciclastic Bāqoroq Formation (Middle Triassic), Nakhlak Area, Central Iran. In STRATI 2013: First International Congress on Stratigraphy At the Cutting Edge of Stratigraphy (pp. 463-468). Springer International Publishing.
Harms JC, Fahnestock RK. 1965. Stratification, bed forms and flow phenomena (with an example from the Rio Grande). In: Middleton GV. (Ed.), Primary sedimentary structures and their hydrodynamic interpretations. Society of Economic Paleontologists and Mineralogist, Special Publication, 12: 84- 115.
Harms,T,A., Burger, H, R., Blednick, G, D., Cooper, J, M., King, J, T., Owen, D, R., Lowell, J., Sincock, M,J., Karentburg, S, R., Purfall, A., and Picornell, C, M.,2004a. Character and origin of Precambrian fabrics and structures in the Tobacco Root
Mountains, Montana, in Montain, in Brady, J, B., et al., eds. Precambrian geology of the Tobacco Root Mountains, Montana: Boulder, Colorado, Geological Society of American Secial Paper377, p.203-226.
Ito, M., Matsukawa, M., Saito, T., & Nichols, D.J., 2006. Facies architecture and paleohydrology of a synrift succession in the Early Cretaceous Choyr Basin, Southern Mongolia. Cretaceous Research, 27: 226-240.
Jain, M., Tandon, S.K., Singhvi, A.K., Mishra, S. and Bhatt, S.C., 2005. Quaternary alluvial stratigraphic development in a desert setting: a case study from the Luni River basin. Thar Desert of western India, In Blum, S.B. Marriott, M.D. and Leclair, S.E. (eds.), Fluvial Sedimentology VII, International Association of Sedimentologists Special Publication 35, Blackwell, 349-371. Jiang, R., Liu, Z., Xia, S., Zhu, M., Tang, J., Wu, G., & Wu, W. (2024). A Multi-Faceted Approach to Determining the Provenance of the Lacustrine Rift Basin in the Initial Rifting Stage: A Case Study of the Paleocene Qintong Sag, Subei Basin, East China. Minerals, 14(4), 420.
Joshi, K. B., Banerji, U. S., Dubey, C. P., & Oliveira, E. P. (2021). Heavy minerals in provenance studies: an overview. Arabian Journal of Geosciences, 14, 1-16.
Kessler, H., & Thomas, J. (2023). Sedimentary structures and depositional environments of the Wealden Formation. Sedimentary Geology, 392, 125-145.
Khalaf, E. E. D. A. H., El-Azabi, M., Mokhtar, H., & Bernard, K. (2020). Stratigraphy and facies architecture of the Neoproterozoic syn-and inter-eruptive succession: An example from Gabal El Urf, Northeastern Desert, Egypt. Precambrian Research, 350, 105905.
Kim, S.B.,Kim, Y.G., Jo, H.R., Jean, K.S., & Cough, S.K., 2009. Depositional facies, architecture and environmens of Sihva Formation(Lowre Cretaceous), mid-west Korea with special refrence to dinosaur eggs. Cretaceous Reserch, 30:100-126. Kostic, B., Bech, A., & Aigner, T., 2005. 3-D sedimentary architecture of a Quaternary gravel delta (SW-Germany): Implication for hydrostratigraphy. Sedimentary Geology, 181: 143-171.
Lee ,HS; Chough SK. 2006. Lithostratigraphy and depositional environments of the Pyeongan Super group (Carboniferous- Permian) in the Taebaek area mid-east Korea. Journal of Asian Earth Sciences, 26: 339- 352.
Li, J., Zhang, X., Tian, J., Liang, Q., & Cao, T. (2021). Effects of deposition and diagenesis on sandstone reservoir quality: A case study of Permian sandstones formed in a braided river sedimentary system, northern Ordos Basin, Northern China. Journal of Asian Earth Sciences, 213, 104745.
Liang, C., Liu, C., Xie, X., Yu, X., Huang, L., Pan, J., ... & Zhang, H. (2024). Depositional process and sediment dispersal pattern of mass transport complex on a slope with numerous elliptical depressions, northwestern South China Sea. Sedimentary Geology, 106676.
Mange, M. A., & Maurer, H. (2012). Heavy minerals in colour. Springer Science & Business Media.
McGhee, C., Muhammed, D., Simon, N., Acikalin, S., Utley, J. E., Griffiths, J., ... & Worden, R. H. (2022). Stratigraphy and sedimentary evolution of a modern macro‐tidal incised valley: An analogue for reservoir facies and architecture.
Sedimentology, 69(2), 696-723.
Miall AD. 1978. Lithofacies types and vertical profile models in braided river deposits. In: Miall AD. (Ed.), Fluvial Sedimentology, Calgary. Can. Soc. Petrol. Geol., Mem., 5: 597- 604.
Miall AD. 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Science Reviews, 22: 261- 308.
Miall AD. 1988. Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies. AAPG Bulletin, 72: 682- 697.
Miall AD. 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag Inc., Heidelberg, 582 p.
Miall AD. 2000. Principles of Sedimentary Basin Analysis. Springer, Berlin, 616 p.
Miall AD. 2006. How do we identifybig rivers, and big is big? Sedimentary Geology, v, pp. 39-50.
Miall AD. 2006. How do we identifybig rivers, and big is big? Sedimentary Geology, v, pp. 39-50.
Miall, A. D., and Jones, B. 2003. Fluvial architecture of the Hawkesbury Sandstone (Triassic), near Sydney, Australia: Journal of Sedimentary Research, v. 73, p. 531-545
Miall, A.D. 1992. Alluvial deposits. In, R.G. Walker and N.P. James (Eds.), Facies Models: Response to Sea Level Change. Geological Association of Canada, Geotext 1, p. 119-142.
Nesse, W. D. (2012). Introduction to mineralogy. Oxford Univ. Press.
Okolo, G. C., Emedo, O. C., Obumselu, A. C., Madukwe, F. C., & Ulasi, A. N. (2020). Lithofacies, particle size analysis and paleodepositional environment of the Eze-Aku Group (Cenomanian–Turonian) in the Itigidi-Ediba area, Afikpo Synclinorium, southeastern Nigeria. Journal of Sedimentary Environments, 5, 375-398.
Okrusch, M., & Frimmel, H. E. (2020). Mineralogy: An introduction to minerals, rocks, and mineral deposits. Springer Nature.
Petit, F., Gol, F., Houbrechts, G., & Assani, A.A., 2005. Critical specific stream power in gravel-bed rivers. Geomorphology, 69: 92-101.
Pirouz, M. (2018). Post-collisional deposits in the Zagros foreland basin: Implications for diachronous underthrusting. International Journal of Earth Sciences, 107(5), 1603-1621.
Rahiminejad, A. H., Yazdi, M., & Ashouri, A. R. (2011). Miocene scleractinian corals from a mixed siliciclastic–carbonate system: Bakhtiari succession, Zagros Basin (central-western Iran). Alcheringa: An Australasian Journal of Palaeontology, 35(4), 571-592.
Razum, I., Rubinić, V., Miko, S., Ružičić, S., & Durn, G. (2023). Coherent provenance analysis of terra rossa from the northern Adriatic based on heavy mineral assemblages reveals the emerged Adriatic shelf as the main recurring source of siliciclastic material for their formation. Catena, 226, 107083.
Reading, H.G., Levell, B.K., 1996. Controls on the sedimentary record In: Sedimentary Environment: Prosesses, Facies and Stratighrsphy (Ed. Reading,H.G.). Blackwell Science , Oxfprd; 5-36.
Rostami, F., Feiznia, S., Aleali, M., Hashmati, M., & Yousefi Yegane, B. (2020). Application of grain-size statistics, lithofacies and architectural element in determining depositional environment of Kashkan Formation in Merk watershed, Kermanshah. International journal of environmental science and technology, 17, 1351-1372.
Selly , R.C . 2002. Ancient sedimentary Environments,,London: Chapman and Hall, 317p.
Singh, D., Singh, P. K., Kainthola, A., Pandey, H. K., Kumar, S., & Singh, T. N. (2022). Analysis of failure pattern in cut slopes of bedded sandstone: a case study. Environmental Earth Sciences, 81(15), 398.
Strand, K., 2005. Sequence stratigraphy of the silisiclastic east Puolanka Group the Palaeoproterozoic Kainuu Belt, Finland. Sedimentary Geology, 176: 149-166.
Therrien, F., 2006. Depositional environments and alluvial system changes in the dinosaur-bearing Sânpetru Formation (Late Cretaceous, Romania): Post-orogenic sedimentation in an active extensional basin, Sedimentary Geology, 192: 183–205. Tuker, M.E. 2001. Sedimentary Petrology (an introduction to the origin of sedimentary rocs): Third edition, Blackwell,
Oxford, 260 p. Walker R. G., and James NP. 1992. Facies Model Response to Sea Level Change. Geological Association of Canada, 409 p. Wendt, J., Kaufmann, B., Belka, Z., Farsan, N. and Karimi Bavandpour, A. 2005. Devonian/Lower Carboniferous
stratigraphy, facies patterns and palaeogeography of Iran, part II, northern and central Iran. Acta Geologica Polonica, 55, No. 1, 31-97, Warszawa. Yagishita, K., Tankano, O., 2500. Recognition of a floodplain within braid delta deposits of the Oligocene Minato Formation, north-east Japan: fine deposits correlated with transgression: In Blum, M.D. Marriott, S.B. and Leclair, S.E. (eds.), Fluvial Sedimentology VII, International Association of Sedimentologists Special Publication 35, Blackwell, 557-568. Yakouti, I. E., Asmi, H. E., Gourari, L., Benabbou, M., Hayati, A., Salah, M., & Chellai, E. H. (2024). Facies analysis, architectural elements, and paleoenvironmental reconstruction of alluvial deposits of the low terraces and floodplains in the Middle Sebou river (Eastern Saïss foreland basin, Morocco). Journal of African Earth Sciences, 211, 105170. Yang, W., Hou, J., Liu, Y., Dou, L., & Wang, X. (2022). The pore structures of different lithofacies in low-permeability sandy conglomerate reservoirs and their diagenetic impacts: a case study from the Es4 member of the northern steep slope in Dongying depression, Bohai Bay Basin, NE China. Marine and Petroleum Geology, 136, 105481. Zaheer, M., Khan, M. R., Mughal, M. S., Janjuhah, H. T., Makri, P., & Kontakiotis, G. (2022). Petrography and Lithofacies of the Siwalik Group in the Core of Hazara-Kashmir Syntaxis: Implications for Middle Stage Himalayan Orogeny and Paleoclimatic Conditions. Minerals, 12(8), 10