Reconstruction of sedimentary environment, and depositional sequences based on Microfacies of the Qom Formation in the Kahak area (Southwest of Qom city)
Subject Areas :Mahdiyeh Mahyad 1 , Hosyen Vaziri moghadam 2
1 -
2 -
Keywords: Microfacies depositional sequences Qom Formation Kahak area,
Abstract :
In this study, sedimentary environment and depositional sequences were reconstructed based on distribution of microfacies in the sequence belong to the Qom Formation in the Kahak area. The formation was formed alternation of shale and limestone. The boundary between the Qom Formation and the volcanic rocks is unconformable. In addition, the Upper Red Formation in the Kahak area unconformably overlies the Qom Formation. In the study area, 6 microfacies, and 1 terrigenous facies (shale) for the Qom Formation were identified by study of these rock samples. The Qom Formation was deposited in an open-shelf carbonate platform in the study area. This platform can be divided into two environments that the environments consist of the inner shelf (restricted lagoon and semi-restricted lagoon) and middle shelf. Finally, two third-order sequences were identified based on distribution of microfacies in the Kahak area.
[1] آقانباتي، ع.، 1385، زمين شناسي ايران: سازمان زمين شناسي و اکتشافات معدني کشور، 586 ص.
[2] بختیاری، س.، 1392، اطلس راههای ایران: موسسه جغرافیایی و کارتوگرافی گیتا شناسی، 1:1000000.
[3] بهفروزی، ا.، صفری، ا. و وزیری مقدم، ح.، ۱۳۸۸، بررسي ريز رخساره ها و تفسير محيط رسوبي سازند قم در منطقه چنار(شمال غرب كاشان)، رخساره¬هاي رسوبي، جلد ۲، شماره ۲، ۱۴۳-۱۵۲ .
[4] دهقان، ر.، صفری، ا. و وزیری مقدم، ح.، ۱۳۸۹، بررسي ريزرخساره ها و محيط هاي رسوبي سازند قم در ناحيه قهرود (جنوب كاشان)، پژوهشهای دانش زمین، جلد ۱، شماره ۳، ۶۰-۷۳.
[5] قلمقاش، ج.، و ع. ر. باباخانی، 1998، نقشۀ زمین شناسی چهارگوش کهک: انتشارات سازمان زمین شناسی کشور، شماره 6158، مقیاس 1:100000.
[6] قنبرلو، ح.، وزيري مقدم، ح.، صيرفيان، ع.، طاهري، ع. و رحماني، ع.، ۱۳۹۶، ريز رخساره ها و محيط رسوبي سازند شهبازان در چاه شماره 3 ميدان نفتي قلعه نار، جنوب غرب لرستان، فصلنامه زمين شناسي ايران، جلد ۱۱، شماره ۴۱، ۶۳-۷۸.
[7] محمدی، ا. و عامری،ح.، ۱۳۹۵، ريزرخساره ها و مدل رسوبگذاري سازند قم در ناحیه خورآباد (جنوب شرقی قم)، پژوهشهاي دانش زمين، جلد ۷، شماره ۲۸، ۳۷-۵۸.
[8] محمدیان اصفهانی، م.، صفری، ا. و وزیری مقدم، ح.، ۱۳۹۲، بررسی ریزرخسارهها و محیط رسوبی سازند قم در ناحیه بیجگان (شمال شرق دلیجان)، رخساره های رسوبی، جلد ۶، شماره ۱، ۶۵-۷۶.
[9] ABAIE, I., ANSARI, H.J., BADAKHSHAN, A., and JAAFARI, A., 1964, History and development of the Alborz and Sarajeh fields of Central Iran: Bulletin of Iranian Petroleum Institute, 15, 561–574.
[10] ABICH, H., 1858: Vergleichende Grrundzuge der Geologie des Kaukasus wie der Armenischen und Nord Persischen Gebrige (Prodromus einer Geologie der Kaukasischen lander). Mémoires de l'Académie impériale des sciences de St. Pétersbourg, vol. 7, p. 359–534.
[11][ AFZAL, J., WILLIAMS, M., LENG, M.J., and ALDRIDGE, R.J., 2011, Dynamic response of the shallow marine benthic ecosystem to regional and pan-Tethyan environmental change at the Paleocene–Eocene boundary: Palaeogeography, Palaeoclimatology, Palaeoecology, 309(3), 141–160.
][12]AGARD, P., OMRANI, J., JOLIVET, L. and MOUTHEREAU, F., 2005, Convergence history across Zagros (Iran): constraints from collisional and earlier deformation: International Journal of Earth Sciences, 94(3), 401-419.
[13] ALAVI, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304(1), 1-20.
[14] ALLEN, M.B. and ARMSTRONG, H.A., 2008, Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling: Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1-2), 52-58.
[15]ALLAHKARAMPOUR Dill M., SEYRAFIAN A., and VAZIRI-MOGHADDAM H., 2010, The Asmari Formation, north of the Gachsaran (Dill anticline), southwest Iran: facies analysis, depositional environments and sequence stratigraphy:Carbonates Evaporites, 25,145–160.
[16] ALLISON, P.A. and BOTTJER, D.J., 2011, Taphonomy: process and bias through time: Springer, New York, 603.
[17] AMIRSHAHKARAMI, M., VAZIRI-MOGHADDAM, H., and TAHERI, A., 2007, Paleoenvironmental model and sequence stratigraphy of the Asmari Formation in southwest Iran: Historical Biology, 19(2), 173-183.
[18]BEAVINGTON-PENNEY, S.J. 2004, Analysis of the effects of abrasion on the test of Palaeonummulites venosus: implications for the origin of nummulithoclastic sediments: Palaios, 19(2), 143-155.
[19] BEAVINGTON-PENNEY, S.J. and RACEY, A., 2004, Ecology of extant nummulitids and other large benthic foraminifera: applications in palaeoenvironmenanalysis: Earth-Science Reviews, 67, 219–265.
[20] BEAVINGTON-PENNEY, S.J., WRIGHT, V.P. and WOELKERLING, W.J., 2004, Recognising macrophyte-vegetated environments in the rock record: a new criterion using ‘hooked’forms of crustose coralline red algae: Sedimentary Geology, 166, 1–9.
[21] BEAVINGTON‐PENNEY, S.J., WRIGHT, V.P. and RACEY, A., 2005, Sediment production and dispersal on foraminifera‐dominated early Tertiary ramps: the Eocene El Garia Formation, Tunisia: Sedimentology, 52(3), 537-569.
[22] BEAVINGTON-PENNEY, S.J., WRIGHT, V.P. and RACEY, A., 2006, The middle Eocene Seeb Formation of Oman: an investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings: Journal of Sedimentary Research, 76, 1137–1161.
[23] BERBERIAN, M. and KING, G.C.P., 1981, Towards a paleogeography and tectonic evolution of Iran: Canadian Journal of Earth Sciences, 18(2), 210-265.# [24] BERESI, M.S., CABALERI, N.G., LÖSER, H., and ARMELLA, C., 2016, Coral patch reef system and associated facies from southwestern Gondwana: paleoenvironmental evolution of the Oxfordian shallow-marine carbonate platform at Portada Covunco, Neuquén Basin, Argentina: Facies, 63, 1–22.
[25] BOVER-ARNAL, T., FERRANDEZ-CANADELL, C., AGUIRRE, J., ESTEBAN, M., FERNANDEZ-CARMONA, J., ALBERT-VILLANUEVA, E. and SALAS, R., 2017, Late Chattian platform carbonates with benthic foraminifera and coralline algae from the SE Iberian plate: Palaios, 32, 61–82.
[26] BRACHERT, T.C., BETZLER, C., BRAGA, J.C. and MARTIN, J.M., 1998, Microtaphofacies of a warm-temperate carbonate ramp (uppermost Tortonian/lowermost Messinian, southern Spain): Palaios, 13, 459–475.
[27] BRANDANO, M. and CORDA, L., 2002و Nutrients, sea level and tectonics: constrains for the facies architecture of a Miocene carbonate ramp in central Italy: Terra Nova, 14(4), 257-262.
[28] BRANDANO, M., FREZZA, V., TOMASSETTI, L. and CUFFARO, M., 2009, Heterozoan carbonates in oligotrophic tropical waters: the Attard member of the lower coralline limestone formation (Upper Oligocene, Malta): Palaeogeography, Palaeoclimatology, Palaeoecology, 274, 54–63.
[29]BRANDANO, M., MORSILLI, M., VANNUCCI, G., PARENTE, M., BOSELLINI, F. and MATEU-VICENS, G. 2010, Rhodolith-rich lithofacies of the Porto Badisco Calcarenites (upper Chattian, Salento, southern Italy): Italy Journal Geoscience, 129(1), 119-131.
[30] BRANDANO, M., LIPPARINI, L., CAMPAGNONI, V. and TOMASSETTI, L., 2012, Downslope-migrating large dunes in the Chattian carbonate ramp of the Majella Mountains (Central Apennines, Italy): Sedimentary Geology, 255, 29–41.
[31] BRANDANO, M., CORNACCHIA, I., RAFFI, I. and TOMASSETTI, L., 2016, The Oligocene–Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy): Sedimentary Geology, 333, 1–14.
[32] COLMAN-SADD, S.P., 1982, Two stage continental collision and plate driving forces: Tectonophysics, 90(3-4), 263-282.
[33] CORDA, L., and BRANDANO, M., 2003, Aphotic zone carbonate production on a Miocene ramp, Central Apennines, Italy: Sedimentary Geology, 161, 55-70.
[34] ĆOSOVIĆ, V., DROBNE, K. and IBRAHIMPAŠIĆ, H., 2012, The role of taphonomic features in the palaeoecological interpretation of Eocene carbonates from the Adriatic carbonate platform (PgAdCP): Neues Jahrbuch für Geologie und Paläontologie, 265, 101–112.
[35] DUNHAM, R. J., 1962, Classification of carbonate rocks according to depositional texture. In, Ham, W.E. eds., Classification of carbonate rocks: A symposium, American Association Petroleum Geologist, 108–121.
[36]EMBRY, A. F. and KLOVAN, J. E., 1972, Late Devonian reef tract on northeastern Banks Island, Northwest territories: Bulletin of Canadian Petroleum Geology, 19, 730–781.
[37] EMERY, D. and MYERS, K., 1996, Sequence stratigraphy: BP Exploration, Stockley Park, London, 297.
]38[ FLÜGEL, E., 2010, Microfacies of Carbonate Rocks, Analysis, Interpretation and Application: Springer-Verlag, Berlin, 976.
[39] FURRER, M.A. and SODER, P.A., 1955, The oligo-Miocene marine formation in the Qom region (central Iran): In Proceedings of the 4th World Petroleum Congress, Rome, Section I/A/5, 267-277.
[40] GANSSER, A., 1955, New aspects of the geology in Central Iran: Rome, Section L/A/S, 280-300.
[41] GEEL, T., 2000, Recognition of stratigraphic sequence in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, 155, 211–238.
[42] GONERA, M., 2012, Palaeoecology of the Middle Miocene foraminifera of the Nowy Sącz Basin (Polish Outer Carpathians): Geological Quarterly, 56, 107–116.
[43] GREENSTEIN, B.J. and PANDOLFI, J.M., 2003, Taphonomic alteration of reef corals: Effects of reef environment and coral growth form II: The Florida Keys: Palaios, 18, 495–509.
[44] HALFAR, J., GODINEZ-ORTA, L., MUTTI, M., VALDEZ-HOLGUÍN, J. E. and BORGES, J. M., 2004, Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico: Geology, 32, 213–216.
[45] HANDFORD, C.R. and LOUCKS, R.G., 1993, Carbonate depositional sequences and systems tracts-responses of carbonate platforms to relative sea level changes, in Loucks, R.G., and Sarg, J.F. (eds.), Carbonate sequence stratigraphy – Recent developments and applications: AAPG Memoir, 57, 3–41.
[46] HEYDARI, E., 2008, Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran: Tectonophysics, 451(1-4), 56-70.
[47] HOLZMANN, M., HOHENEGGER, J., HALLOCK, P., PILLER, W.E. and PAWLOWSKI, J., 2001, Molecular phylogeny of large miliolid foraminifera (Soritacea Ehrenberg 1839): Marine Micropaleontology, 43(1-2), 57-74.
[48] HORTON, B.K., HASSANZADEH, J., STOCKLIN, D.F., AXEN, G.J., GILLIS, R.J., GUEST, B., AMINI, A., FAKHARI, M.D., ZAMANZADEH, S.M. and GROVE, M., 2008, Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics: Tectonophysics, 451(1-4), 97-122.
[49] HOTTINGER, L., 2000, Functional Morphology of Benthic Foraminiferal Shells, Envelopes of Cells beyond Measure: Micropaleontology, 46, 57–86.
[50] KOVÁCS, S.Z.I.L.A.M.É.R. and ARNAUD-VANNEAU, A., 2004, Upper Eocene Paleobathymetry approach based on Paleoecological Assemblages from the Pleşca Valley 2. outcrop, Transylvania–a preliminary report: Acta Palaeontol. Rom, 4, 191-202.
[51] LANGER, M. R. and HOTTINGER, L., 2000, Biogeography of selected" larger" foraminifera: Micropaleontology, 46, 105–126.
[52]LOFTUS, W.K., 1854, On the Geology of portions of the Turko-Persian Frontier, and of the Districts adjoining: Quarterly Journal of the Geological Society, 10(1-2), 464-469.
[53]LOFTUS, W.K., 1855, On the geology of portions of the Turko-Persian frontier, and of the districts adjoining: Quarterly Journal of the Geological Society, 11(1-2), 247-344.
[54] MOHAMMADI, E., SAFARI, A., VAZIRI-MOGHADDAM, H., VAZIRI, M.R., and GHAEDI, M., 2011, Microfacies analysis and paleoenviornmental interpretation of the Qom Formation, South of the Kashan, Central Iran: Carbonates Evaporites, 26, 255–271.
[55] MOHAMMADI, E., HASANZADEH-DASTGERDI, M., GHAEDI, M., DEHGHAN, R., SAFARI, A., VAZIRI-MOGHADDAM, H., BAIZIDI, C., VAZIRI, M.R. and SFIDARI, E., 2013, The Tethyan Seaway Iranian Plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan Seaway: Carbonates and evaporites, 28(3), 321-345.
[56] MOHAMMADI, E., HASANZADEH-DASTGERDI, M., SAFARI, A. and VAZIRI-MOGHADDAM, H., 2018, Microfacies and depositional environments of the Qom Formation in Barzok area, SW Kashan, Iran: Carbonates and Evaporites, 1-14.
[57] MOSSADEGH, Z. K., HAIG, D. W., ALLAN, T., HDABI, M. H. and SADEGHI, A., 2009, Salinity changes during late Oligocene to early Miocene Asmari Formation deposition, Zagros Mountains. Iran: Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 17–36.
[58] MURRAY, J.W., 2006, Ecology and applications of benthic foraminifera: University Press, Cambridge, London, 426.
[59] MUTTI, M. and Hallock, P., 2003, Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints: International Journal of Earth Science, 92, 465–475.
[60] NEBELSICK, J.H. and BASSI, D., 2000, Diversity, growth forms and taphonomy: key factors controlling the fabric of coralline algae dominated shelf carbonates: Geological Society, London, Special Publications, 178, 89–107.
[61] NEBELSICK, J.H., BASSI, D. and RASSER, M.W., 2011, Microtaphofacies: Exploring the Potential for Taphonomic Analysis in Carbonates, In: ALLISON, P.A., and BOTTJER, D.J. (Eds.), Taphonomy Aims and Scope Topics in Geobiology Book Series, 32: Springer, Dordrecht, 337–373.
[62] NEBELSICK, J.H., BASSI, D. and LEMPP, J., 2013, Tracking paleoenvironmental changes in coralline algal-dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy): Facies, 59, 133–148.
[63] PAYROS, A., PUJALTE, V., TOSQUELLA, J. and ORUE-ETXEBARRIA, X., 2010, The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): An analogue of future shallow-marine carbonate systems. Sedimentary Geology, 228, 184–204.
[64] PERRY, C.T., 2005, Structure and development of detrital reef deposits in turbid nearshore environments, Inhaca Island, Mozambique: Marine Geology, 214(1-3), 143-161.
[65] POMAR, L., 2001, Types of carbonate platforms: a genetic approach: Basin Research, 13, 313–334.
[66] POMAR, L., MATEU-VICENS, G., MORSILLI, M. and BRANDANO, M., 2014, Carbonate ramp evolution during the late Oligocene (Chattian), Salento Peninsula, southern Italy: Palaeogeography, Palaeoclimatology, Palaeoecology, 404, 109-132.
[67] POMAR, L., ESTEBAN, M., MARTINEZ, W., ESPINO, D., DE OTT, V.C., BENKOVICS, L. and LEYVA, T.C., 2015, Oligocene–Miocene carbonates of the Perla Field, Offshore Venezuela: Depositional model and facies architecture, In BARTOLINI, C., and MANN, P. (Eds.) Petroleum geology and potential of the Colombian Caribbean margin: AAPG Mermior, The American Association of Petroleum Geologist, 647–674.
[68] POMAR, L. and HAQ, B.U., 2016, Decoding depositional sequences in carbonate systems: Concepts vs experience: Global Planetary Change, 146, 190–225.
[69] POMAR, L., BACETA, J.I., HALLOCK, P., MATEU-VICENS, G. and BASSO, D., 2017, Reef building and carbonate production modes in the west-central Tethys during the Cenozoic: Marine and Petroleum Geology, 83, 261–304.
[70] QUARANTA, F., TOMASSETTI, L., VANNUCCI, G. and BRANDANO, M., 2012, Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta): Geodiversitas, 34, 151–166.
[71] RASSER, M.W., SCHEIBNER, C. and MUTTI, M., 2005, A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain): Facies, 51(1-4), 218-232.
[72] READ, J. F., 1982, Carbonate platforms of passive (extensional) continental margins-types, characteristics and evolution: Tectonophysics, 81(3-4), 195–212.
[73] READ, J. F., 1985, Carbonate platform facies models: Geological Society of America Bulletin, 69(1), 1-21.
[74] RENEMA, W., 2006, Large benthic foraminifera from the deep photic zone of a mixed siliciclastic-carbonate shelf off East Kalimantan, Indonesia: Marine Micropaleontology, 58, 73–82.
[75] REUTER, M., PILLER, W.E., HARZHAUSER, M., MANDIC, O., BERNING, B., RÖGL, F., KROH, A., AUBRY, M.P., WIELANDT-SCHUSTER, U. and HAMEDANI, A., 2009, The Oligo-/Miocene Qom Formation (Iran): evidence for an early Burdigalian restriction of the Tethyan Seaway and closure of its Iranian gateways: International Journal of Earth Sciences, 98(3), 627-650.
[76] RIEGL, B., POIRIEZ, A., JANSON, X. and BERGMAN, K.L., 2010, The gulf: facies belts, physical, chemical, and biological parameters of sedimentation on a carbonate ramp, In WESTPHAL, H., REIGL, B., and EBERLI, G.P. (Eds.), Carbonate Depositional Systems: Assessing Dimensions and Controlling Parameters: Springer, 1, 145–213.
[77] ROMERO, J., CAUS, E., and ROSELL, J., 2002, A model for the palaeoenvironmental distribution of larger foraminifera based on late Middle Eocene deposits on the margin of the South Pyrenean basin (NE Spain): Palaeogeography, #Palaeoclimatology, Palaeoecology, 179, 43–56.
[78] SARG, J.F., 1988, Carbonate sequence stratigraphy, In WILGUS, C.K., HASTINGS, B.S., KENDALL, C. G.St.C., POSAMENTIER, H.W., ROSS, C.A. and VAN WAGONER, J.C. (Eds.), Sea-Level Changes: An integrated approach. Society for Sedimentary Geology, Special Publication, 43, 155–181.
[79]SARKAR, S., 2017, Microfacies analysis of larger benthic foraminifera-dominated Middle Eocene carbonates: a palaeoenvironmental case study from Meghalaya, NE India (Eastern Tethys): Arabian Journal of Geosciences, 5, 1–13.
[80] SEDDIGHI, M., VAZIRI-MOGHADDAM, H., TAHERI, A. and GHABEISHAVI, A., 2012, Depositional environment and constraining factors on the facies architecture of the Qom Formation, Central Basin, Iran: Historical Biology, 24(1), 91-100.
[81] SEYRAFIAN, A. and TORABY, H., 2005, Petrofacies and sequence stratigraphy of the Qom Formation (Late Oligocene-Early Miocene?), north of Nain, southern trend of central Iranian Basin: Carbonates and evaporites, 20(1), 82.
[82] SILVESTRI, G., BOSELLINI, F.R. and NEBELSICK, J.H., 2011, Microtaphofacies analysis of lower Oligocene turbid-water coral assemblages: Palaios, 26, 805–820.
[83] STAHL, A. F., 1911, Persien, in Handbuch der Regionalen Geologie: Heidelberg (Winter), 8 (5- 6), 46.
[84] TAHERI A., VAZIRI-MOGHADDAM H. and SEYRAFIAN A., 2008, Relationships between foraminiferal assemblages and depositional sequences in Jahrum Formation, Ardal area (Zagros Basin, SW Iran), Historical Biology, 20(3), 191-201.
[85]TAHERI, A., 2010, Paleoenvironmental model and sequence stratigraphy for the Oligo-Miocene foraminiferal limestone in east of Dogonbadan: Stratigraphy Sedimentology, 40(3), 15-30.
[86]TIETZE, E., 1875, Ein Ausflug nach dem Siahkuh (Schwarzer Berg) in Persien: Mitteilungen der Geographischen Geographichen Gesellschaft Wein, 18(8), 257–267.
[87] TOMASSETTI, L., BENEDETTI, A., and BRANDANO, M. 2016, Middle Eocene seagrass facies from Apennine carbonate platforms (Italy): Sedimentary Geology, 335, 136–149.
[88] VAN WAGONER, J.C., POSAMENTIER, H.W., and MITCHUM, R.M.J.R., 1988, An overview of the fundamentals of sequence stratigraphy and key definition, In WILGUS, C.K.B.S., HASTINGS, KENDALL, C.G.St.C., POSAMENTIER, H.W., ROSS, C.A., and VAN WAGONER, J.C. (Eds.), Sea- Level Changes: An integrated approach: SEPM (Society for Sedimentary Geology), 42, 39–45.
[89] VAZIRI-MOGHADDAM, H., KIMIAGARI, M. and TAHERI, A., 2006, Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran: Facies, 52(1), 41-51.
[90]VINCENT, S.J., ALLEN, M.B., ISMAIL-ZADEH, A.D., FLECKER, R., FOLAND, K.A. and SIMMONS, M.D., 2005, Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region: Geological Society of America Bulletin, 117(11-12), 1513-1533.
[91] VINCENT, S.J., MORTON, A.C., CARTER, A., GIBBS, S. and BARABADZE, T.G., 2007. Oligocene uplift of the Western Greater Caucasus: an effect of initial Arabia–Eurasia collision: Terra Nova, 19(2), 160-166.
[92] WILSON, M.E., and EVANS, M.J., 2002, Sedimentology and diagenesis of Tertiary carbonates on the Mangkalihat Peninsula, Borneo: implications for subsurface reservoir quality: Marine and Petroleum Geology, 19, 873–900.
[93] XU, G.S., MA, R.L. and ZHANG, C.J., 2008, Qom group microfacies and Reservoir characteristics of Garmsar block in Iran Basin [J]: Computing Techniques for Geophysical and Geochemical Exploration, 6, 5.