• Home
  • hossein rezaie yegane doost
  • OpenAccess
    • List of Articles hossein rezaie yegane doost

      • Open Access Article

        1 - Permeability improvement calculated from Stoneley-FZI method in Kangan reservoir, one of Iran's gas fields
        hossein rezaie yegane doost
        Permeability in fluid flow is for a porous rock, which is exactly what causes the problem. core analysis and well testing are two most commonly used methods of permeability measurement, but in-vitro measurement of permeability by applying core analysis on all wells in a More
        Permeability in fluid flow is for a porous rock, which is exactly what causes the problem. core analysis and well testing are two most commonly used methods of permeability measurement, but in-vitro measurement of permeability by applying core analysis on all wells in a specific field is very time consuming and costly and even impossible when dealing with Horizontal wells. Wells testing, on the other hand, is not cost-effective for reasons such as; High costs and zero production during the testing process. Therefore, thanks to their low cost, comprehensiveness and availability, permeability estimation methods developed according to conventional logs land DSI diagrams are of critical importance. Taking this into account, in the present study, permeability was first estimated using multi-resolution graph-based clustering (MRGC) and the results were compared with permeability rates obtained from core analysis. In the second stage, permeability was measured by ST-FZI method and the results were compared with permeability rates obtained from core analysis. In the third stage, the multi-resolution graph-based clustering (MRGC) method was used to improve the permeability calculated by the ST-FZI method and overcome the reservoir heterogeneity. First the flow units were identified, and then the ST-FZI method was applied on each flow unit to calculate permeability and finally the calculated permeabilities were combined to obtain an accurate permeability graph of the studied well. The correlation coefficients of permeability rates estimated via core analysis in the multi-resolution graph-based clustering method (R2 = 77), ST-FZI method (R2 = 47) and improved method (R2 = 84) were measured. The afore-mentioned method was able to improve the permeability calculated in the previous step by 37% and was recognized as the best permeability measurement method in the Kangan reservoir of the well subjected to study. Manuscript profile