• OpenAccess
    • List of Articles Asmari

      • Open Access Article

        1 - The Study of Overburden Pressure Effect on Cementation Factor in Hydraulic Flow Units of Carbonate Rocks
        حبیب اله  صدیقی
        Abstract Analyze of parameters which influence the petrophysical Properties of reservoir rocks is necessary in dynamic model simulation of reservoirs. According to the relation of cementation factor and reservoir pressure changes, cementation factor is the most effec More
        Abstract Analyze of parameters which influence the petrophysical Properties of reservoir rocks is necessary in dynamic model simulation of reservoirs. According to the relation of cementation factor and reservoir pressure changes, cementation factor is the most effective parameter in water saturation determination in the mentioned model, so the study of the effect of pressure on cementation factor is necessary. In this study, firstly carbonate core samples of a gas reservoir, in the south of Iran was classified by hydraulic flow unit delineation method. Then their cementation factors were determined by Archie equation and best fit curve method at ambient, 800, 2000, 3500, and 5000 psi pressures. The changes in cementation factor values due to increasing overburden pressure were evaluated in each hydraulic flow unit and their relationship with flow zone indicator (FZI) were studied by experimental equations (for 4 flow units 0.95<R2<0.99). In this study a relation between flow zone indicator for each hydraulic flow unit and cementation factor changes, due to the different pressures, were also obtained. The experimental results of studied reservoir cores shows that with increasing flow zone indicator the changes in cementation factors decreases. Manuscript profile
      • Open Access Article

        2 - The Study of Overburden Pressure Effect on Cementation Factor in Hydraulic Flow Units of Carbonate Rocks
        حبیب اله  صدیقی کاظم سعادت محمد رضا  اصفهانی عزت اله  کاظم زاده
        Abstract Analyze of parameters which influence the petrophysical Properties of reservoir rocks is necessary in dynamic model simulation of reservoirs. According to the relation of cementation factor and reservoir pressure changes, cementation factor is the most effec More
        Abstract Analyze of parameters which influence the petrophysical Properties of reservoir rocks is necessary in dynamic model simulation of reservoirs. According to the relation of cementation factor and reservoir pressure changes, cementation factor is the most effective parameter in water saturation determination in the mentioned model, so the study of the effect of pressure on cementation factor is necessary. In this study, firstly carbonate core samples of a gas reservoir, in the south of Iran was classified by hydraulic flow unit delineation method. Then their cementation factors were determined by Archie equation and best fit curve method at ambient, 800, 2000, 3500, and 5000 psi pressures. The changes in cementation factor values due to increasing overburden pressure were evaluated in each hydraulic flow unit and their relationship with flow zone indicator (FZI) were studied by experimental equations (for 4 flow units 0.95<R2<0.99). In this study a relation between flow zone indicator for each hydraulic flow unit and cementation factor changes, due to the different pressures, were also obtained. The experimental results of studied reservoir cores shows that with increasing flow zone indicator the changes in cementation factors decreases. Manuscript profile
      • Open Access Article

        3 - Biostratigraphy and paleoecology of the Asmari Formation at Tang-e Shivi, north-west flank of Nowdan Anticline in north of Kazerun (Interior Fars) and age correlation with three another sections in Costal Fars and Izeh Zone
        ٍٍElahe Sattari
        Abstract In this research, the Asmari Formation΄s benthic foraminifera at Tang-e Shivi north-western flank of Nowdan Anticline in north of Kazerun (Interior Fars), with geographic coordinates E: 51° 44' 58'' and N: 29° 47' 42'', have been studied in order to introduce More
        Abstract In this research, the Asmari Formation΄s benthic foraminifera at Tang-e Shivi north-western flank of Nowdan Anticline in north of Kazerun (Interior Fars), with geographic coordinates E: 51° 44' 58'' and N: 29° 47' 42'', have been studied in order to introduce assemblage zones, age and paleoecology and correlate the age of the Asmari Formation with sections in Costal Fars and Izeh Zone (Firozabad, Dill, Shagabil). Its upper and lower boundaries are comfortable with Gachsaran and Pabdeh formations. Three assemblage zones at the studied section were recognized based on benthic foraminifera and biostratigraphy study. Detected biozones reflect Oligocene (Rupelian and Chattian) and Miocene (Aquitanian) age for this studied deposits with 348 meters thickness. Assemblage zone 1, with Firozabad section and assemblage zone 2 with 3 other sections and assemblage zone 3 with Dill anticline are correlatable. Environmental parameters such as: salinity, light, nutrients, temperature and depth, have played a role concerning the distribution of foraminifera. Accordingly, the Asmari Formation deposited in a normal salinity to hyper salinity water, aphotic to euphotic and oligophy to eutrophy zones. Grain supported microfacies (O4, O5, B, L1, L2, L4, L5 and L7), support reservoir quality for the Asmari Formation in subsurface areas, next to the studies section. The carbonate grain association types of the study section are nanofer, rodalgal, foralgal and foramol. Manuscript profile
      • Open Access Article

        4 - Microfacies and palaeoecology of the Asmari Formation in southeast flank of the Khami anticline (east of Gachsaran) and Correlation with two other sections of the Asmari Formation in the Zagros Basin
        همتا رنجبر علی رحمانی
        Abstract In order to characterize the features of facies and depositional environment conditions of the Asmari Formation in southeast flank of the Khami anticline with a thickness of 270 m has been studied. the Field and laboratory studies, led to the identification More
        Abstract In order to characterize the features of facies and depositional environment conditions of the Asmari Formation in southeast flank of the Khami anticline with a thickness of 270 m has been studied. the Field and laboratory studies, led to the identification 12 microfacies (nummulitidae lepidocyclina packestone/rodestone, corallinacea benthic foraminifera (perforate) packstone, bioclast neorotalia packestone, ooid grainstone, bioclast grainstone, miliolid neorotalia nummulitidae packestone, miliolid corallinacea coral floatstone/grainstone, bioclast benthic foraminifera (imperforate) packstone/grainstone, miliolid packstone/grainstone, sandy mudstone, intraclast mudstone) that deposited in continental slope, shoal, lagoon and tidal flat. In three different salinity facies environment from 34 psu to over 50 psu in oligoophotic to euphotic environment and oligotrophy-weak mesotrophy to eutrophy conditions in a homoclinal carbonate ramp platform recognized for the Asmari Formation at this study area. Correlation of the Asmari Formation in 3 section, A water salinity environmental correlation of the Asmari Formaion from Firozabad to east and north of Gachsaran reveals that 1- during Rupelian the Asmari Formation deposited in a normal water salinity environment, 2- while normal salinity water condition prevailed in Gachsaran area during Chattian, the Fars area was under higher marine salinity environment. Higher salinity environment developed during Aquitanian and Burdigalian in Gachsaran area. Manuscript profile
      • Open Access Article

        5 - Microfacies and palaeoecology of the Asmari Formation in southeast flank of the Khami anticline (east of Gachsaran) and Correlation with two other sections of the Asmari Formation in the Zagros Basin
        همتا رنجبر علی رحمانی
        Abstract In order to characterize the features of facies and depositional environment conditions of the Asmari Formation in southeast flank of the Khami anticline with a thickness of 270 m has been studied. the Field and laboratory studies, led to the identification More
        Abstract In order to characterize the features of facies and depositional environment conditions of the Asmari Formation in southeast flank of the Khami anticline with a thickness of 270 m has been studied. the Field and laboratory studies, led to the identification 12 microfacies (nummulitidae lepidocyclina packestone/rodestone, corallinacea benthic foraminifera (perforate) packstone, bioclast neorotalia packestone, ooid grainstone, bioclast grainstone, miliolid neorotalia nummulitidae packestone, miliolid corallinacea coral floatstone/grainstone, bioclast benthic foraminifera (imperforate) packstone/grainstone, miliolid packstone/grainstone, sandy mudstone, intraclast mudstone) that deposited in continental slope, shoal, lagoon and tidal flat. In three different salinity facies environment from 34 psu to over 50 psu in oligoophotic to euphotic environment and oligotrophy-weak mesotrophy to eutrophy conditions in a homoclinal carbonate ramp platform recognized for the Asmari Formation at this study area. Correlation of the Asmari Formation in 3 section, A water salinity environmental correlation of the Asmari Formaion from Firozabad to east and north of Gachsaran reveals that 1- during Rupelian the Asmari Formation deposited in a normal water salinity environment, 2- while normal salinity water condition prevailed in Gachsaran area during Chattian, the Fars area was under higher marine salinity environment. Higher salinity environment developed during Aquitanian and Burdigalian in Gachsaran area. Manuscript profile
      • Open Access Article

        6 - Microfacies and palaeoecology of the Asmari Formation in southeast flank of the Khami anticline (east of Gachsaran) and Correlation with two other sections of the Asmari Formation in the Zagros Basin
        همتا رنجبر علی رحمانی
        Abstract In order to characterize the features of facies and depositional environment conditions of the Asmari Formation in southeast flank of the Khami anticline with a thickness of 270 m has been studied. the Field and laboratory studies, led to the identification More
        Abstract In order to characterize the features of facies and depositional environment conditions of the Asmari Formation in southeast flank of the Khami anticline with a thickness of 270 m has been studied. the Field and laboratory studies, led to the identification 12 microfacies (nummulitidae lepidocyclina packestone/rodestone, corallinacea benthic foraminifera (perforate) packstone, bioclast neorotalia packestone, ooid grainstone, bioclast grainstone, miliolid neorotalia nummulitidae packestone, miliolid corallinacea coral floatstone/grainstone, bioclast benthic foraminifera (imperforate) packstone/grainstone, miliolid packstone/grainstone, sandy mudstone, intraclast mudstone) that deposited in continental slope, shoal, lagoon and tidal flat. In three different salinity facies environment from 34 psu to over 50 psu in oligoophotic to euphotic environment and oligotrophy-weak mesotrophy to eutrophy conditions in a homoclinal carbonate ramp platform recognized for the Asmari Formation at this study area. Correlation of the Asmari Formation in 3 section, A water salinity environmental correlation of the Asmari Formaion from Firozabad to east and north of Gachsaran reveals that 1- during Rupelian the Asmari Formation deposited in a normal water salinity environment, 2- while normal salinity water condition prevailed in Gachsaran area during Chattian, the Fars area was under higher marine salinity environment. Higher salinity environment developed during Aquitanian and Burdigalian in Gachsaran area. Manuscript profile
      • Open Access Article

        7 - Reservoir zonation using discrimination of effective and ineffective porosity method in one of the SW Iranian oil Fields; a special look at resistivity logs
        جواد هنرمند ژیلا رضائیان دلوئی ارسلان زینل زاده
        Abstract In this paper, core samples from Upper carbonates (Miocene age) of the Asmari Formation in one of the SW Iranian oil fields were studied in macro and microscopic scale. Subsequently, results from core and thin section studies compared with core porosity and pe More
        Abstract In this paper, core samples from Upper carbonates (Miocene age) of the Asmari Formation in one of the SW Iranian oil fields were studied in macro and microscopic scale. Subsequently, results from core and thin section studies compared with core porosity and permeability and petrophysical wireline logs, especially resistivity logs. Due to texture variation (mudstone to grainstone) and diagenetic events (dolomitization, dissolution, calcite and anhydrite cementation), porosity type and percentage changed in wide range in this formation. This study showed that resistivity logs could be used as an effective tool to distinct effective and ineffective-bearing zones. High permeability intervals have relatively high deep resistivity and high separation between deep and shallow resistivity logs, whereas non-reservoir intervals have low resistivity and very low separation between deep and shallow resistivity. Based on this study, studied carbonate interval of the Asmari Formation was divided into 13 zones. Using separation of deep and shallow resistivity logs, flow zones could be correlated throughout the studied field Manuscript profile
      • Open Access Article

        8 - Making the lithology log by Clustering-Estimation approach in the wells of an oil field in south of Iran
        ساره صدیق مهرنوش  علی پور شهسواری حسین معماریان بهزاد تخم چی
        Abstruct Reservoir lithology determination is one of the main studies used for well correlation and analyzing productive zones of the reservoir. The best way foer lithology determination is using core and cutting information . Nevertheless,in most More
        Abstruct Reservoir lithology determination is one of the main studies used for well correlation and analyzing productive zones of the reservoir. The best way foer lithology determination is using core and cutting information . Nevertheless,in most wells these data is not complete and continual, so in these cases usually use well logging for lithology estimation of petrophysical well data with Clustering- Estimation approach . This method has been generalized according to one well from one of the oil fields in South of Iran that contains core data . Then this method is generalized in un cored wells. Clustering is used as a way for grouping well data in homogenous lithology clusters After ward, percentage of mineral is estimated in each of these clusters. The regression coefficients are calculated 92.93% and 74.99% between real and estimated data respectively for calcite and dolomite in one of the wells. The results with high accuracy show the generalization of this method. Manuscript profile
      • Open Access Article

        9 - Cyclostratigraphy and Reservoir Correlation of the Oilgo-Miocene Sediments(Asmari Formation ) in the Marun Oilfield,Zagros Basin
        شهرام آورجانی اسداله محبوبی حسن امیری بختیار
        The Asmari Formation in the Marun Oilfield is composed of fossiliferous limestone, dolomitic limestone, argillaceous limestone,sandstone and shale. It is the major reservoir rock of Iran in several oil field of the Zagros Basin .The age of Asmari F More
        The Asmari Formation in the Marun Oilfield is composed of fossiliferous limestone, dolomitic limestone, argillaceous limestone,sandstone and shale. It is the major reservoir rock of Iran in several oil field of the Zagros Basin .The age of Asmari Formation in this oilfield is oligo-Miocene(Rupelian-Burdigalian).In this study , subsurface correlation between the four wells in the Marun oilfield, based on climate stratigraphy is done by using Cyclolog Software.Nine positive and ten negative bounding surfaces have been identified .Some positive and negative bounding surfaces coincide with sequence boundaries and maximum flooding surface, respectively. In addition, some of the positive bounding surfaces identified the main time boundary (stage boundaries). Reservoir correlation between the ten compartments reservoir zones of the Asmari Formation in the Marun oilfield is done with these boundery surfaces.Some reservoir zones(especially the lower and middle Asmari reservroi zones) show perfect matching but others do not show the boundry of adaptive zones.It seems combining these data with other factors such as lithology ,porosity and permeability, detail revision of reservoir zoning of Asmari Formation Marun Oilfield is required. Manuscript profile
      • Open Access Article

        10 - Biostratigraphy and Microfacies of the Asmari Formation in The Zagros Basin:Age and Environmental Correlation
        تهمینه خانعلی
        In this research ,biostratigraphy,microfacies and paleoenvionment of the Asmari Formation in the fars provingce(Tang-e Abolhayat,Naura anticline, south-west of Firozabad,Khormuj anticline),High Zagros(Shoorom anticline), IZeh zone (Mokhtar anticline),Dezfu More
        In this research ,biostratigraphy,microfacies and paleoenvionment of the Asmari Formation in the fars provingce(Tang-e Abolhayat,Naura anticline, south-west of Firozabad,Khormuj anticline),High Zagros(Shoorom anticline), IZeh zone (Mokhtar anticline),Dezful Embayment(Tang-e Anbar sepid, Dill anticline, Khaviz anticline,Aghajari oil field ) and Lurstan province(Mamulan,Sepid-dasht,Dehluran and kabirkuh-Darreshahr0,were reviewed and revised for the comprehensive understanding of age and depositional environments. The Globigerina spp.-Turborotalia cerroazulensis-Hantkenina and Nummulites vascus-Nummulites fichteli assemblage zones (Rupelian) are present in Fars province. The dominated microfacies within the Asmari Formation of the Rupelian time are bioclast planktonic, nummulitidae lepidocyclinidae wackestone-packstone, of an outer and middle ramp depositional setting. The Archaias asmaricus-archaias hensoni-Miogypsinoides complanatus assemblage zone (Chattian)is present in Fars ,High zagros,Izeh and Dezful Embayment provinces. The dominated microfacies within the Asmari Formation of the Chattian time are bioclast perforate-imperforate foraminifera wackestone-packstone and mudstone, of an inner ramp depositional setting . The Miogypsina-Elphidium sp. 14-Peneroplis farsensis assemblage zone(Aquitanian) is present in High Zagros, Izeh ,Dezful Embayment and parts of the Fars and Lurestan provinces.The dominated microfacies within the Asmari Formation of the Aquitanian time are perforate-imperforate foraminifera bioclast wackestone –packstone,grainstone,and mudstone,of an inner ramp depositional setting. The Borelis melo curdica –Borelis melo melo assemblage zone (Burdigalian) is present in most areas. But it slightly occurs in fars province. The microfacies of the Asmari Formation during Burdigalian are similar to those of Aquitanian .In sepid-dasht and Tang-e Anbar Sepid sections due to presence Globigerina spp. Assemblage zone and planktonic forminifera wackestone-packstone facies, an outer ramp depositional setting is also suggested. Manuscript profile
      • Open Access Article

        11 - Iagenetic controls on reservoir quality of the Asmari carbonate succession in the Cheshmeh Khush Field, SW Iran
        جواد هنرمند عبدالحسین امینی
        The Oligo-miocence Asmari Formation in the Cheshmeh Kush Oil Field consists of a mixed carbonate-siliciclastic succession. The carbonate intervals of the Formation display a high degree of vertical heterogeneity created by a complex diagenetic history. This study is aim More
        The Oligo-miocence Asmari Formation in the Cheshmeh Kush Oil Field consists of a mixed carbonate-siliciclastic succession. The carbonate intervals of the Formation display a high degree of vertical heterogeneity created by a complex diagenetic history. This study is aimed to investigate the effect of diagenetic events on reservoir quality of carbonate intervals of the Asmari Formation. Core samples and thin sections were studied from sedimentological and diagenetic point of view. Results from cathodoluminesence and scanning electron microscopy were used to investigate diagenetic features in details. Core analysis data (porosity and permeability) and wire-line logs (porosity and oil saturation values) from studied interval were used in order to examine reservoir properties. Diagenetic studies and their comparison with petrophysical data demonstrated that dolomitization, cementation (calcite, anhydrite and celestite cements), compaction and dissolution are the most important diagenetic events affecting porosity and permeability of the reservoir. Based on vertical distribution of diagenetic features and reservoir characteristics, diagenetic zones (DZ) of the carbonate succession were introduced. Medium crystalline dolostones with sparse compaction features and limited anhydrite cement (DZ-23, 27 and 30) comprise the highest value of porosity and permeability. Whereas intense mechanical and chemical compaction and evaporate (anhydrite and celestite) cementation in some dolomitic intervals have thoroughly reduced reservoir quality (DZ-12, 11 and 24). Compaction and calcite cementation (coarse spary, equant and poikilotopic types) in some limestone intervals damaged reservoir properties and created non-reservoir intervals (DZ-3, 20 and 17). In contrast, high value of interparticle and dissolution porosities along with minor compaction and cementation effects has improved reservoir properties of the Asmari limestones (DZ-31 and 32). This study shows that the reservoir characteristics of the Asmari Formation in the studied field are dominantly affected by diagenetic events and therefore diagenetic studies and determination of diagenetic zones in field-scale are the most important part in static reservoir modeling and Manuscript profile
      • Open Access Article

        12 - Biomarker study of Asmari Reservoir oil in the oil fields situated in N.E. Dezful Embayment
        علیرضا  بنی اسد
        Masjid-e-Solyman, Haft kel, Par-e-Siah and Naft Safid are productive oil fields which are located in mountain front of NE Dezful Embayment. In this research, in order to Geochemical correlation and Petroleum Systems determination of Asmari oils, a few oil samples were s More
        Masjid-e-Solyman, Haft kel, Par-e-Siah and Naft Safid are productive oil fields which are located in mountain front of NE Dezful Embayment. In this research, in order to Geochemical correlation and Petroleum Systems determination of Asmari oils, a few oil samples were subjected to biomarker studies by GC and GC-MS techniques. Review of biomarkers fingerprints indicate two petroleum systems probably are active in studied oilfields. A major petroleum system that has controlled the hydrocarbon generation, migration and accumulation in all studied oilfields and a younger petroleum system, which has caused mixture of oils with another source in Masjed-Soleyman and Par-e-Siah oilfields, Biomarkers fingerprints, Steranes, Hopanes in addition to the main petroleum system. parameters, Pristane to Phytane ratios and also n- alkane's distributions among the studied oils, indicate that the Asamri oils were produced mainly from a marine and marine-carbonate source rock(s), which has been deposited in an anoxic conditions, with kerogen mainly of Type II with little contribution of terrestrial Kerogen (Type III) and oil samples has a maturity about early oil window without any severe biodegradation. 13C isotope values distribution, presence of Oleannane biomarker and slightly differences - mainly from lithological aspects and maturation levels of oils - of Masjid-Soleyman and Par-e-Siah Oils, reveal that, the mixed oils in these two reservoirs have been probably produced from two source rocks, a younger source rock namely Pabdeh Formation (Middle Eocene and Early Oligocene) with less importance of Kazhdumi Formation (Albian) which is the main source rock Manuscript profile
      • Open Access Article

        13 - Biomarker study of Asmari Reservoir oil in the oil fields situated in N.E. Dezful Embayment
        Mahmud Memariani Ali reza Bani asad
        Masjid-e-Solyman, Haft kel, Par-e-Siah and Naft Safid are productive oil fields which are located in mountain front of NE Dezful Embayment. In this research, in order to Geochemical correlation and Petroleum Systems determination of Asmari oils, a few oil samples were s More
        Masjid-e-Solyman, Haft kel, Par-e-Siah and Naft Safid are productive oil fields which are located in mountain front of NE Dezful Embayment. In this research, in order to Geochemical correlation and Petroleum Systems determination of Asmari oils, a few oil samples were subjected to biomarker studies by GC and GC-MS techniques. Review of biomarkers fingerprints indicate two petroleum systems probably are active in studied oilfields. A major petroleum system that has controlled the hydrocarbon generation, migration and accumulation in all studied oilfields and a younger petroleum system, which has caused mixture of oils with another source in Masjed-Soleyman and Par-e-Siah oilfields, Biomarkers fingerprints, Steranes, Hopanes in addition to the main petroleum system. parameters, Pristane to Phytane ratios and also n- alkane's distributions among the studied oils, indicate that the Asamri oils were produced mainly from a marine and marine-carbonate source rock(s), which has been deposited in an anoxic conditions, with kerogen mainly of Type II with little contribution of terrestrial Kerogen (Type III) and oil samples has a maturity about early oil window without any severe biodegradation. 13C isotope values distribution, presence of Oleannane biomarker and slightly differences - mainly from lithological aspects and maturation levels of oils - of Masjid-Soleyman and Par-e-Siah Oils, reveal that, the mixed oils in these two reservoirs have been probably produced from two source rocks, a younger source rock namely Pabdeh Formation (Middle Eocene and Early Oligocene) with less importance of Kazhdumi Formation (Albian) which is the main source rock. Manuscript profile
      • Open Access Article

        14 - Oligocene microfacies and sedimentary environment of the Asmari Formation at northwest of Deris village, west of Fars province: correlation with three other sections in Zagros Basin
        samir Akhzari Ali Seyrafian
        In this disquisition, Oligocene (Rupelian-Chattian) microfacies and sedimentary environment of the Asmari Formation at the northwest of Deris village, located in interior Fars zone of the Zagros Basin have been interpreted. The coordinates of such section are N: 29o 4 More
        In this disquisition, Oligocene (Rupelian-Chattian) microfacies and sedimentary environment of the Asmari Formation at the northwest of Deris village, located in interior Fars zone of the Zagros Basin have been interpreted. The coordinates of such section are N: 29o 41' 59'', E: 51 o 32' 26''. The Asmari Formation deposits in this section are divided into 5 lithological units and consist of 460 m thin, medium, thick and massive bedded, gray and cream to gray limestone, slightly dolomitic with nodular and marly interbedded. By study of hyaline benthic foraminifera genera and non-foraminifera, and also recognition of some properties such as skeletal ingredient associations and sedimentary textures of thin sections, 14 microfacies have been introduced for the Asmari Formation. Gradual perpendicular changes of these microfacies represent that settling the Asmari Formation deposits took place in a homoclinal rapm. This homoclinal ramp consists of middle ramp and inner ramp, that are separated by shoal environment. Middle ramp is recognized by presence and dominition hyaline benthic foraminifera, coralline red algae and echinoids. The most significant skeletal debris of inner ramp are porcelainous foraminifera. To compare the thickness, age and sedimentary environment, zonal correlation of the Asmari Formation done in Deris section with three other sections (Naura anticline, Dill anticline and Dehloran) in the Zagros Basin. This correlation represent that the age of the Asmari Formation gets younger to the deeper parts of the foreland basin of the Zagros. Manuscript profile
      • Open Access Article

        15 - Comparison of image log interpretation and core analysis advantages for study of fractures in hydrocarbon reservoir rocks: a case study in the Asmari reservoir Aghajari oil field
        Masumeh Vatan dust Ali Farzipour Saein Esmaeil Salarvand
        The Oligo-Miocene Asmari Formation is one of the main reservoir rocks of SW Iran with several decades of production history from different oil fields in the Zagros fold- thrust belt. One of the main reasons for the high quality of the Asmari reservoir is well develope More
        The Oligo-Miocene Asmari Formation is one of the main reservoir rocks of SW Iran with several decades of production history from different oil fields in the Zagros fold- thrust belt. One of the main reasons for the high quality of the Asmari reservoir is well developed fracture system in this formation. Characteristics of fractures such as type, opening and orientation can be determined by the core analysis and also interpreting the image logs. This paper attempts to compare the advantages of the image log and core analysis in detecting fractures and other geological feathers in different zones of the Asmari Formation. To achieve this goal, we have compared the image log and core of well no. 89 of the Aghajari oil field. Comparison of the core well no. 89 of the Aghajari oil field with its image log revealed distinguish of the bedding planes in the core easier and more reliable than the image log. This study demonstrates the image log is more capable than core to detect the open fractures, while it is not suitable for detecting filled fractures. Indeed, image log rarely can detect shear fractures, but if it is calibrated with core, it can detect shear fractures with reasonable accuracy. Manuscript profile
      • Open Access Article

        16 - Microfacies and depositional environment of the Asmari Formation in the Izeh zone
        Mohammad.reza Taheri Ali asghar Gabishavi
        In this study, microfacies features of the Asmari Formation have been studied. The study area is located in the Izeh zone, in the vicinity of Izeh city. Accordingly four outcrop sections (Halayjan, Kuh Shur, Kuh-e Bad and Gharibi Ha) have been sampled and investigated. More
        In this study, microfacies features of the Asmari Formation have been studied. The study area is located in the Izeh zone, in the vicinity of Izeh city. Accordingly four outcrop sections (Halayjan, Kuh Shur, Kuh-e Bad and Gharibi Ha) have been sampled and investigated. Due to unique tectonical characteristic and lateral as well as spatial variations of the outcrops, different facies have been deposited across the Asmari Formation platform in the study area. Based on the sedimentary structures, texture, skeletal and non-skeletal grains, 11 microfacies have been recognized which have been deposited in three different sub environments including open marine, shoal and lagoon. Based on this reaserch, for the Asmari Formation, three independent depositional models have been considered during the Chattian, Aquitanian and Burdigalian. On the basis of the results of this study, during the Chattian, Aquitanian and Burdigalian the Asmari Formation has been deposited in a homoclinal ramp system. During the Burdigalian toward the NE of study area (Gharibi Ha section), the shallow water deposits are abruptly overlain by pelagic limestone. Therefore, during the Burdigalian toward the NE of study area, probably, the carbonate ramp has been changed to drowned carbonate platform. It is interpreted as the result of a regional tilting that started in the late of the Burdigalian. During the Chattian in the Gharibi Ha area, the base of the carbonate Asmari Formation transits into the marl-dominated Pabdeh Formation towards the Halayjan area which could be concerned as an analogue to investigate about the stratigraphic oil traps potential in the Izeh zone. Manuscript profile
      • Open Access Article

        17 - Biostratigraphy, sedimentary environment and sequence stratigraphy of the Asmari Formation in well no. 4 of Lab-e Safid oil field (north of Dezful embayment, SW of Lurestan) and Tang- e Lendeh (Kuh-e Safid, NW of Dehdasht)
        Selahedin Arab pour Ali Seyrafian Ali Rahmani
        In this research biostratigraphy, microfacies, sedimentary environment and sequence stratigraphy of the Asmari Formation in well no.4 of Lab-e Safid (north of Dezful embayment, SW of Lurestan) and Tang- e Lendeh (Kuh-e Safid, NW of Dehdasht) has been studied. The tota More
        In this research biostratigraphy, microfacies, sedimentary environment and sequence stratigraphy of the Asmari Formation in well no.4 of Lab-e Safid (north of Dezful embayment, SW of Lurestan) and Tang- e Lendeh (Kuh-e Safid, NW of Dehdasht) has been studied. The total thickness of the Asmari Formation is 360 m and 260 m in the Lab-e Safid and Tang- e Lendeh sections, respectively and composed of thick, medium and thin bedded limestone. The correlation of recognized biozones in the studied regions with other regions in Zagros (Bangestan Anticline: tang-e Band, tang-e Nayab and Tang-e Bulfares, Parsi oil field, Kuh-Asmari and Khaviz Anticline: Tang-e Bibinarjes) indicates that Asmari Formatin in Tang-e Bibinarjes, Tang-e Band and, well no.4 of Lab-e Safid has deposited earlier than other regions. Four different sub environments were identified in the Asmari Formation based on microfacies analysis including tidal flat, lagoon, shoal, open marine. These depositional environments correspond to inner, middle and outer ramp. On the basis of deepening and shallowing patterns in the microfacies five and two third-order sequences have been recognized in the Lab-e Safid and Tang- e Lendeh sections, respectively. In order to study the changes of depositional environment of the Asmari Formation during the Oligocene-Miocene, the recognized sequences in this study have been correlated with those recognized in other parts of the Zagros basin. Manuscript profile
      • Open Access Article

        18 - Biostratigraphy, microfacies and sedimentary environment of the Asmari Formation at Somghan area and correlation with other sections in the Zagros basin
        Mehrnaz Rahimzadeh Ali Seyrafian Ali Rahmani
        The difference in the depositional setting of the Zagros, causes multiple carbonate facies.The Asmari Formation deposited in the foreland basin during Oligo-Miocene time. In this study, biostratiography and microfacies of the Asmari Formation at Nowdan anticline next to More
        The difference in the depositional setting of the Zagros, causes multiple carbonate facies.The Asmari Formation deposited in the foreland basin during Oligo-Miocene time. In this study, biostratiography and microfacies of the Asmari Formation at Nowdan anticline next to Somghan village (39 Km north of Kazerun) are studied. The thickness of the Asmari Formation is 302 meters and its upper and lower boundries are coverd. Field work studies resulted to recognize 4 lithostratigraphic units (unit 1: thin to medium bedded limestone, unit 2: thick and some thin and medium bedded limestone, unit 3: thin and thick bedded nudular limestone, unit 4: thin bedded nudular limestone). Based on microscopic studies, 20 genera and 19 species of benthic foraminifera were identified and two biozones related to the Oligocene were identified. Based on textural and faunal studies, nine microfacies related lagoon and open marine were differentiated. Also in this study, to reconstract geometry and to analyze the role of Qatar-Kazerun fault during Oligocene, 11 sections of the Asmari Formation were examined. Manuscript profile
      • Open Access Article

        19 - Biostratigraphy, microfacies and sequence stratigraphy of the Asmari Formation (based on Cyclolog) in the Qaleh Nar Oli field, Zagros Basin
        adel neisi ali Ghobeishav Mohammad Allahkarampour-Dill
        In this research, biostratigraphy, microfacies, sedimentary environments and sequence stratigraphy (using by Cyclolog software) of the Asmari Formation are carried out. These studies are done on the basis of 580 samples (core and cutting) from 430 meters thickness of th More
        In this research, biostratigraphy, microfacies, sedimentary environments and sequence stratigraphy (using by Cyclolog software) of the Asmari Formation are carried out. These studies are done on the basis of 580 samples (core and cutting) from 430 meters thickness of the formation from the well #2 of the Qaleh-Nar oilfield. Paleontological studies are led to identification of 23 genera and 28 species of the benthic and planktonic foraminifera. According to these microfossils, four assemblage zones have been recognized which confirm the age of Oligocene (Rupelian – Chattian) and Early Miocene (Aquitanian – Burdigalian) for the whole formation. Paleoenvironmental studies demonstrate 9 different microfacies that were deposited in the outer ramp (open marine) in the lower Asmari part, middle ramp (open marine to shoal) in the middle Asmari part and the inner ramp environment (tidal flat to lagoon) in the upper Asmari part. The sequence stratigraphy on the well #2 and the auxiliary well numbers 1, 3, 5, 6 and 7 of the Qaleh-Nar oilfield using by Cyclolog software reveals 7 positive breaks and 9 negative break levels alternatively. Some of the positive breaks define sequence boundaries and some of the negative breaks present the maximum flooding surfaces. In addition, a number of positive levels specify the major chronozone (stage boundaries). Comparison of the quintuple reservoir zones of the Asmari Formation in the Qaleh-Nar oilfield with the mentioned break levels suggests a fine correlation with these levels; however this correlation is invalid for other levels. Manuscript profile
      • Open Access Article

        20 - Biostratigraphy and sedimentary environment of Asmari Formation in Davan section, North of Kazerun
        masood khoshnood Hosyen Vaziri moghadam
        This research concentrates on biostratigraphy, microfasies and Sedimentary environment of the Asmari Formation at Davan village in 10 Km north of Kazerun. Micropalaeontological study led to recognition of 25 genera and 15 species of foraminifera. Based on biostratigraph More
        This research concentrates on biostratigraphy, microfasies and Sedimentary environment of the Asmari Formation at Davan village in 10 Km north of Kazerun. Micropalaeontological study led to recognition of 25 genera and 15 species of foraminifera. Based on biostratigraphic study 3 biozones (1-Nummulites vascus – Nummulites fichteli assemblage zone, 2 -Lepdocyclina-Operculina- Ditrupa Assemblage Zone, 3- Archaias asmaricus- Archaias hensoni- Miogypsinoides complanatus Assemblage Zone) are determined. As a result, the age of the Asmari Formation is Oligocene (Rupelian – Chattian) at the study area. Depositional texture, petrographic analyses and fauna led to identification of 9 carbonate microfacies related to open marine, slope, bar and lagoon. These depositional environments correspond to inner, middle, and outer ramp. Manuscript profile
      • Open Access Article

        21 - Fracture analysis of the Asmari Formation of Dara anticline, as analog model for other Asmari subsurface hydrocarbon reservoirs
        saeed mohammadi asl Ali Farzipour Saein Ghodratollah Shafiei
        The quality of the Asmari Formation, as the reservoir rock of almost three-quarters of the explored oil In Southwest Iran, is often affected by the fractures system. In this paper, in order to study fracture patterns in the Asmari Formation, as well as to present an ana More
        The quality of the Asmari Formation, as the reservoir rock of almost three-quarters of the explored oil In Southwest Iran, is often affected by the fractures system. In this paper, in order to study fracture patterns in the Asmari Formation, as well as to present an analog model for other Asmari reservoirs, the Dara anticline in South Dezful depression, which has extensive outcrops of the Asmari Formation, has been studied. During field studies, eleven stations on the anticline, in its different structural positions, have been investigated. In the southwestern limb, four fracture sets trending AZ40-50,AZ130-140,AZ10-20,AZ80-90, in the northeastern limb four fracture sets trending AZ130-140,AZ50-60,AZ170-180,AZ110-120, and in its hinge area, three fracture sets with AZ50-60,AZ130-140,AZ0-10 trends have been identified. From the structural perspective, all the identified fracture sets are associated with folding. In this study, the relative formation time of the identified fractures relative to folding, has been diagnosed as before or simultaneously with folding. Based on field studies, fractures density in the Dara anticline, the Asmari outcrop, ranges from 11.75 to 2 fractures per meter. Indeed, variation range of the fracture length is 1 to 25 m and most fractures have a length of lower than 5 meters. Also, in this study it was found that there is a negative logarithmic relationship between fracture density and sedimentary layers thickness. Manuscript profile
      • Open Access Article

        22 - Study the role of drilling mud loss modeling and FMI log in determining Asmari reservoir fractures in one of the oil fields in Southwest Iran
        Kioumars Taheri Mohammad Reza  Rasaei Abbas Ashjaei
        Understanding of oil and gas reservoirs is of great help in maximizing hydrocarbon recovery. In the study of the characteristics of oil structures, the study of fractures of reservoir rock in the stages of production and development of the field is very necessary. Nowad More
        Understanding of oil and gas reservoirs is of great help in maximizing hydrocarbon recovery. In the study of the characteristics of oil structures, the study of fractures of reservoir rock in the stages of production and development of the field is very necessary. Nowadays, the use of mud loss modeling and image logs in helping accomplish this task is of great assistance to oil geologists. Since the most of Iran's reservoirs are carbonate kind, investigating and identifying fractures, the degree of fissures opening and porosity distribution in the Asmari reservoir field of study, It is one of the most effective factors in the production of hydrocarbons from this field. One of the best ways to identify and interpret geology in the well, using of the FMI image log is, which can create high quality images from the well. With the help of the images provided, can determine the types of fractures, porosity, the distribution of diagenetic porous spaces and the estimation of permeability trend. In this article, first, structure and Functionality of the FMI image log and then drilling and production problems were evaluated in Asmari reservoir. In the following, the functional role of the log in interpreting and determining the degree of fissures opening, porosity distribution and permeability level in 8 wells in Asmari reservoir, has been evaluated. In this study, identification of Asmari reservoir fractures and how to expand these fractures in the reservoir By using mud loss modeling, interpretation of the FMI image log and the effect of these fractures was on the porosity and permeability of the reservoir. In this study, it has been determined that, fractures identified in wells very good matching with drilling mud loss maps with rock basement faults at the has anticline of the Asmari reservoir. Manuscript profile
      • Open Access Article

        23 - Biostratigraphy and microfacies of the Asmari Formation in Lar anticline (northeast of Gachsaran): biostratigraphical correlation
        Meysam Barari Kharkeshi Ali Seyrafian Hossein Vaziri-Moghaddam Roohollah Shabafrooz
        The Asmari Formation at the Lar anticline, located 77 km northeast of Gachsaran city, comprised 361 meters in thickness. In the present study, biostratigraphy and microfacies of the Asmari Formation at the Lar anticline (northeast of Gachsaran city) is investigated. Bas More
        The Asmari Formation at the Lar anticline, located 77 km northeast of Gachsaran city, comprised 361 meters in thickness. In the present study, biostratigraphy and microfacies of the Asmari Formation at the Lar anticline (northeast of Gachsaran city) is investigated. Based on foraminiferal distribution, 25 genera and 21 species have been identified and four biozones: 1. Lepidocyclina – Operculina – Ditrupa assemblage zone, 2. Archaias asmaricus – Archaias hensoni – Miogypsinoides complanatus assemblage zone, 3. Indeterminate zone, 4. Borelis melo curdica – Borelis melo melo assemblage zone, representing Oligocene (Chattian) to Early Miocene (Aquitanian - Burdigalian) are introduced, respectively. 12 microfacies related to an open marine and lagoon (semi-closed and closed) environments of homoclinal ramp setting are present. Manuscript profile
      • Open Access Article

        24 - Biostratigraphy and microfacies analysis of the Shahbazan and Asmari formations (through Eocene to Oligocene) in the carbonate deposits of northwest Dezful Embayment, Zagros Sedimentary Basin
        sepedeh Gholampoor-moghahi Hosyen Vaziri moghadam Naser Arzani Afshin Armoon
        Abstract In this research based on petrography study of 320 thin sections (cutting samples), biostratigraphy, microfacies and depositional environment analysis has been done to determine the boundary between the Shahbazan and Asmari formations in well No. 1 of the Bala More
        Abstract In this research based on petrography study of 320 thin sections (cutting samples), biostratigraphy, microfacies and depositional environment analysis has been done to determine the boundary between the Shahbazan and Asmari formations in well No. 1 of the Balarud Oil Field, located in the north of Dezful embayment. The Shahbazan Formation with 460 meters thick with mainly composed of dolomite along with interlayers of limestone, shale and anhydrite in the studied well. The lower boundary of this formation with the Pabdeh Formation is conformable and its upper boundary with the Asmari Formation is marked by an unconformity. The Asmari Formation with thickness of 140 meters mainly consists of limestone and shale with the interlayers of dolomite; its upper boundary to the Gachsaran Formation is conformable. Biostratigraphy studies documented a high diversity of shallow-water benthic and rare planktonic foraminiferas and led to the determining of one assemblage zone in the Shahbazan Formation (15 genera and 8 species) that indicates age of the Priabonain. Three assemblage zones also were recognized in the Asmari Formation (12 genera and 8 species) that, shows the age of the Asmari Formation from Mid-Rupelian to the Chattian, Aquitanian and Burdigalin. Based on biostratigraphy studies, the boundary between Shahbazan and Asmari formations and the position of an unconformity between them were determined. The facies analysis led to recognition of eight microfacies for the Shahbazan Formation which belong to three facies belts of inner (tidal flat and lagoon), middle and outer ramp, deposited on a ramp-type carbonate platform. Also four microfacies were recognized in the Asmari Formation which are related to the inner carbonate platform. Manuscript profile
      • Open Access Article

        25 - Biostratigraphy and microfacies of the Asmari Formation in north flank of Khami anticline (north of Gachsaran)
        Mona Rahim Abadi Hossein Vaziri-Moghaddam Ali Seyrafian farzad Sotohian
        In the present study, biostratigraphy, microfacies and sedimentary environment of the Asmari Formation in north flank of the Khami anticline in the north of the Gachsaran province is investigated. The Asmari Formation at the study section with a thickness of 276 meters More
        In the present study, biostratigraphy, microfacies and sedimentary environment of the Asmari Formation in north flank of the Khami anticline in the north of the Gachsaran province is investigated. The Asmari Formation at the study section with a thickness of 276 meters is a thin, medium and thick to massive limestone, nodular limestone, marl, marly limestone, dolomite and dolomitic limestone. In this study 166 thin sections are studied and 23 genera and 24 species of foraminifera have been identified and 3 biozones are introduced. 1- Archaias asmaricus-Archaias hensoni-Miogypsinoides complanatus Assemblage zone. (Chattian) 2- Indeterminate zone (Aqutanian) 3- Borelis melo curdica-Borelis melo melo Assemblage zone. (Burdigalian) Thus, the age of the Asmari Formation at the study area is Chattian to Burdigalian (Oligo-Miocene). Based on study of thin sections and by considering the sediment texture, distribution of skeletal and non-skeletal grains, 12 microfacies are recognized which were deposited in open marine, bar, semi-restricted and restricted lagoon. Four platform types for the Asmari Formation at the study area in comparison with the recent studies on Asmari Formation including: 1-Rupelian-lower Chattian: Distally steepend ramp, 2-middle Chattian-upper Chattian: open shelf, 3-Aqiutanian: homoclinal ramp, 4-lower Burdigalian: carbonate platform. Manuscript profile
      • Open Access Article

        26 - The impact of microfacies and diagenesis characteristics on the reservoir quality of Asmari Formation in the Gevarzin gas field, Zagros basin, south Iran
        Karim  Mombani   Ahmad Yahyaei
        Asmari Formation from the Gavarzin gas field have erosional unconformity boundary on marl and pelagic limestones of Pabdeh Formation and gradually change to evaporate cap rock of Gachsaran Formation. Cores studies from the one of wells of Gavarzin field is 183 m in thic More
        Asmari Formation from the Gavarzin gas field have erosional unconformity boundary on marl and pelagic limestones of Pabdeh Formation and gradually change to evaporate cap rock of Gachsaran Formation. Cores studies from the one of wells of Gavarzin field is 183 m in thickness, which includes 1.30 m from the top of Pabdeh, 162.4 m from the Asmari Formation and 19.30 m from the base layers of Gachsaran. Asmari Formation includes alternation of limestone, calcite dolomitic, claystone and shale with green marl. Petrology and facies analysis of the sequence of these formations identified 12 microfacies, a carbonate ramp from deep-sea to sabkha environments and formed in a retrograded sequence. This ramp includes deep environments, open sea, patch reef, bio-, clastic-bars, lagoon and tidal environments, which confirms a changing environment due to rapid facies changes and deposition of evaporative sediments in Gachsaran as a restricted environment. Diagenesis processes are considered as the main factors in carbonate reservoir quality of Gavarzin field. The diagenesis history of the Asmari carbonates of the studied cores is summarized as A) marine phreatic diagenesis, bioturbation, micritization and cementation processes occurred. B) vadose zone diagenesis, where the crystallization, cementation, and dissolution occurred. C) burial diagenesis, comprises compression-induced, pressure dissolution and fracturing are common. The microfacies show a wide varieties of reservoir characteristics and therefore a heterogeneous reservoir has been formed. Micro-fractures, however have strongly influence on the reservoir quality in the section. The simultaneous presence of dissolved spaces and fractures in the reservoir the permeability greatly increased. The best reservoir quality in the Grainstone/Packston facies are coated grains with moldic porosity that were created by the leaching of Ooid-bearing Packston lithology during the diagenesis of atmospheric waters. Manuscript profile
      • Open Access Article

        27 - (Biostratigraphy and microfacies of the Asmari Formation in south flank of Mish anticline (northeast of Gachsaran
        Saber Ahmadi Ali seyrafian Hosyen vaziri-Moghadam
        Asmari Formation at the section of the south flank of Mish anticline (northeast of Gachsaran), located 22 km northeast of Basht city, in vicinity village Kalagh ¬Neshin is investigated and has a thickness of 281 meters. In this research, biostratigraphy and microfacies More
        Asmari Formation at the section of the south flank of Mish anticline (northeast of Gachsaran), located 22 km northeast of Basht city, in vicinity village Kalagh ¬Neshin is investigated and has a thickness of 281 meters. In this research, biostratigraphy and microfacies of the Asmari Formation in this section were studied and the results were compared with 5 section of Asmari Formation in similar regions and close to it. By studying on 172 microscopic sections, 3 the biozone for Asmari Formation in the section the study was carried out and the section studied given that is: Lepidocyclina – Operculina – Ditrupa assemblage zone. Archaias asmaricus – Archaias hensoni – Miogypsinoides complanatus assemblage zone. Indeterminate zone. According to the study of benthic foraminifera and biozones, the cut off age is from the late Oligocene (Rupelian-Chattian) to the early Miocene (Aquitanian). Microfacies studies led to identify 10 microfacies and 4 subfacial belonging to the open marine and lagoon (semi-closed and enclosed) environments, which includes the external, intermediate, and interior parts of a hemocalinal ramp. Manuscript profile
      • Open Access Article

        28 - Permeability estimation using petrophysical logs and artificial intelligence methods: A case study in the Asmari reservoir of Ahvaz oil field
        Abouzar Mohsenipour Bahman Soleimani iman Zahmatkesh Iman  Veisi
        Permeability is one of the most important petrophysical parameters that play a key role in the discussion of production and development of hydrocarbon fields. In this study, first, the magnetic resonance log in Asmari reservoir was evaluated and permeability was calcula More
        Permeability is one of the most important petrophysical parameters that play a key role in the discussion of production and development of hydrocarbon fields. In this study, first, the magnetic resonance log in Asmari reservoir was evaluated and permeability was calculated using two conventional methods, free fluid model (Coates) and Schlumberger model or mean T2 (SDR). Then, by constructing a simple model of artificial neural network and also combining it with Imperialist competition optimization (ANN-ICA) and particle swarm (ANN-PSO) algorithms, the permeability was estimated. Finally, the results were compared by comparing the estimated COATES permeability and SDR permeability with the actual value, and the estimation accuracy was compared in terms of total squared error and correlation coefficient. The results of this study showed an increase in the accuracy of permeability estimation using a combination of optimization algorithms with artificial neural network. The results of this method can be used as a powerful method to obtain other petrophysical parameters. Manuscript profile
      • Open Access Article

        29 - Cyclostratigraphy study of Asmari reservoir in Karanj, Paranj and Parsi oil fields
        Ardavan Khalili Hosyen Vaziri moghadam Mehran Arian
        The most important reason for studying any oil reservoir is the more efficient use of the production parts of the reservoir and the first step in identifying the reservoir is its zoning. Zoning is determined based on lithological changes by combining production data and More
        The most important reason for studying any oil reservoir is the more efficient use of the production parts of the reservoir and the first step in identifying the reservoir is its zoning. Zoning is determined based on lithological changes by combining production data and petrophysical logs in each reservoir. In order to improve and accelerate the zoning of oil reservoirs, like other branches of science, the use of software has become common in recent years. One of the most powerful of these software's is Cyclolog. The science of using this software is cyclostratigraphy, which can be used to separate reservoir zones based on sedimentary cycles and their knowledge. Cyclolog software with the help of petrophysical logs taken from the wellbore and especially gamma diagram (GR) allows subsurface matching and preparation of matching charts in selected wells. In this study, in the three oil fields studied (Karanj, Paranj and Parsi) using cyclolog software, a total of seven positive timelines (Pb3000, Pb2000, Pb1500, Pb1000, Pb500, Pb400, and Pb300) as well as five negative timelines (Nb4000, Nb3000, Nb2000, Nb1000, and Nb500) were detected. Accordingly, the Pb1500 timeline is the separator and the boundary of the Chattian and Aquitanian peaks, which in the wells of all three studied fields almost cross the boundary of reservoir zones 3 and 4. The Nb4000, Nb3000, and Nb2000 timelines are also Chattian age. The Nb3000 timeline in Karanj oil field has crossed the boundaries of zones 4 and 5 in most of the wells due to calibration with biometric evidence (biostratigraphy) and indicates the top of the formation. The age of the Nb500 timeline is Burdigalian and passes through the middle of their reservoir zone 1 in the study area. The boundary between the Aquitanian and Burdigalian peaks is defined by the Nb1000 timeline. This timeline crosses the boundaries of zones 1 and 2 in all three fields studied Manuscript profile
      • Open Access Article

        30 - Strain and shortening amount analysis in the Asmari anticline, Khuzestan province
        Babak Samani Abbas Charchi Narges Khatib
        The only outcrop of Asmari formation in the Dezful embayment is visible in the Asmari anticline. In order to estimate the strain parameters and shortening values, 26 geological cross sections were prepared perpendicular to the anticline axis. Based on the, interlimb ang More
        The only outcrop of Asmari formation in the Dezful embayment is visible in the Asmari anticline. In order to estimate the strain parameters and shortening values, 26 geological cross sections were prepared perpendicular to the anticline axis. Based on the, interlimb angle measurements, the interlimb angles of the northern and central parts of the anticline show smaller angles than the southern parts. Determination of strain ratio (R) values indicates the strain values between 1.12 - 1.52. The zoning map of strain ratio values shows higher strain values in the northern and central parts of the anticline. Using geological cross sections and measuring the base length of the folded layer of Asmari formation (L0) and the straight length of the layer (L1), the percentage of shortening values were calculated in each section. The results show the occurrence of 1.8% to 12% shortening in different parts of the anticline. Shortening map of the Asmari anticline shows more shortening amounts in the northern and central parts of the anticline than the southern parts. Manuscript profile
      • Open Access Article

        31 - Isotopic and Geochemical comparison of Bangestan and Asmari Oils to determine origination
        ashkan Zardashti Morteza Tabaei mahmood memariani
        In order to analyze the geochemical characteristics, the oil samples of the Asmari reservoirs and the Bangistan group in the Kopal field were studied using various geochemical techniques such as asphalting technique, gas chromatography technique, gas chromatography-mass More
        In order to analyze the geochemical characteristics, the oil samples of the Asmari reservoirs and the Bangistan group in the Kopal field were studied using various geochemical techniques such as asphalting technique, gas chromatography technique, gas chromatography-mass spectrometry technique and carbon isotope measurement technique, were subjected to analysis. the purpose of This research is a comparison of carbon isotope and geochemical properties of Asmara and Bangestan oils in Kopal field to determine their parent rock and origin. Considering the results of the testing technique and analysis of biomakers of the esteranes and terpanes family extracted from saturated cutting, it can be stated that the oils accumulated in the Asmari and Bangestan reservoirs of the Kopal field have the characteristics of oil. are paraffinic, which indicates the existence of light oil with good quality, mature, low viscosity and high sulfur. By placing the ratio of biomarker parameters against carbon 13 isotope and examining the general results of the graphs, it was found that the oil samples of Asmari reservoirs and Bangestan reservoirs in the studied field are from a common generative rock. have been found and have the same characteristics and only slightly differ in maturity, degree of fluidity, and the amount of migration processes between the source rock and the reservoir rock, and similarly, the transformation course of the source rock organic materials has occurred naturally in the Copal field. The values of carbon isotopes in the oils indicate the average maturity of the rocks producing the oils. The graph of the ratio of the aromatic carbon 13 isotope against the saturated carbon 13 isotope showed that both field oil samples The subject of study belongs to marine environments. Manuscript profile
      • Open Access Article

        32 - Reconstruction of Asmari Formation Sedimentary Environment in Asmari and Gurpi Anticlines in the oil field of Masjed Soleiman (Southwest of Iran)
        Navab Varnaseri Davood Jahani Nader Kohansal Ghadimvand Mohsen Pourkermani
        In this research, the process of lithological changes and diagenetic processes of Asmari formation with Oligo-Miocene age has been investigated. For this purpose, 400 samples were selected and collected from a section of the Masjid Suleiman oil field and the surface sec More
        In this research, the process of lithological changes and diagenetic processes of Asmari formation with Oligo-Miocene age has been investigated. For this purpose, 400 samples were selected and collected from a section of the Masjid Suleiman oil field and the surface section of the Asmari anticline in the Dezful depression and the Gurpi anticline in the Izeh zone. Petrographic studies revealed 18 sedimentary microfacies that were deposited on a ramp-type carbonate platform. Among the significant diagenetic processes in the region are the process of micritization, bioturbation and the influence of burrowing organisms, cementation (types of cement related to marine, meteoric and burial diagenesis environments), dissolution (meteoric and burial dissolution), dolomitization (in different phases), silicification, pyritization, phosphatization, mechanical compaction, chemical compaction, fracture and porosity. Based on the identification of the sequence boundaries and following the facies depth changes, the carbonate sequence of the Asmari formation in the subsurface section and the Asmari anticline section are introduced in the form of 3 sedimentary sequences of the third order shallowing upwards, which are the former Aquitanian, the late Aquitanian and Bordigalin belong. Among the dominant porosities in the Asmari Formation, we can mention the hole, mold and fracture porosities. Manuscript profile
      • Open Access Article

        33 - Stratigraphy, facies and depositional conditions of the Asmari Formation (Rupelian-Burdigalian) in the south-eastern folded Zagros, Bandarlengeh embayment (Khamir salt mountain section)
        Peyman Rezaei Seyedeh Akram  Jooybari Abdullah  Najafi
        Asmari Formation (Rupelian-Burdigalian) is one of the most well-known formations in Iran. In order to investigate the stratigraphy and sedimentary environment, a section of this formation was selected in Khamir salt mountain section in Bandarlengeh embayment. In this nu More
        Asmari Formation (Rupelian-Burdigalian) is one of the most well-known formations in Iran. In order to investigate the stratigraphy and sedimentary environment, a section of this formation was selected in Khamir salt mountain section in Bandarlengeh embayment. In this number, 70 limestone microscopic thin sections and 3 marl samples (XRF) were evaluated to identify the microfacies and the sedimentation conditions.The petrographic study led to the identification of 10 microfacies belonging to the facies belts of tidal, lagoon, carbonate bar, open marine, which were deposited in the homoclinal carbonate ramp environment. The composition of marl facies oxides also indicates the presence of carbonate minerals, quartz and clay minerals, which along with field observations and alternating calcareous facies suggest that this facies was deposited in an open marine environment. Finally, it seems that the facies and fossil diversity of the Asmari Formation in the mentioned section is such that during the Aquitanian stage, this formation was located closer to the coast line and during the Rupelian and Chattian-Burdigalian times, it was located at a further distance from the coast line. Manuscript profile