Latest Journal News
  • About Journal


    Latest published articles

    • Open Access Article

      1 - Cyclostratigraphy study of Asmari reservoir in Karanj, Paranj and Parsi oil fields
      Ardavan Khalili Hosyen Vaziri moghadam Mehran Arian
      Iss. 20 , Vol. 10 , Autumn_Winter 2022
      The most important reason for studying any oil reservoir is the more efficient use of the production parts of the reservoir and the first step in identifying the reservoir is its zoning. Zoning is determined based on lithological changes by combining production data and Full Text
      The most important reason for studying any oil reservoir is the more efficient use of the production parts of the reservoir and the first step in identifying the reservoir is its zoning. Zoning is determined based on lithological changes by combining production data and petrophysical logs in each reservoir. In order to improve and accelerate the zoning of oil reservoirs, like other branches of science, the use of software has become common in recent years. One of the most powerful of these software's is Cyclolog. The science of using this software is cyclostratigraphy, which can be used to separate reservoir zones based on sedimentary cycles and their knowledge. Cyclolog software with the help of petrophysical logs taken from the wellbore and especially gamma diagram (GR) allows subsurface matching and preparation of matching charts in selected wells. In this study, in the three oil fields studied (Karanj, Paranj and Parsi) using cyclolog software, a total of seven positive timelines (Pb3000, Pb2000, Pb1500, Pb1000, Pb500, Pb400, and Pb300) as well as five negative timelines (Nb4000, Nb3000, Nb2000, Nb1000, and Nb500) were detected. Accordingly, the Pb1500 timeline is the separator and the boundary of the Chattian and Aquitanian peaks, which in the wells of all three studied fields almost cross the boundary of reservoir zones 3 and 4. The Nb4000, Nb3000, and Nb2000 timelines are also Chattian age. The Nb3000 timeline in Karanj oil field has crossed the boundaries of zones 4 and 5 in most of the wells due to calibration with biometric evidence (biostratigraphy) and indicates the top of the formation. The age of the Nb500 timeline is Burdigalian and passes through the middle of their reservoir zone 1 in the study area. The boundary between the Aquitanian and Burdigalian peaks is defined by the Nb1000 timeline. This timeline crosses the boundaries of zones 1 and 2 in all three fields studied Manuscript Document

    • Open Access Article

      2 - Permeability estimation using petrophysical logs and artificial intelligence methods: A case study in the Asmari reservoir of Ahvaz oil field
      Abouzar Mohsenipour Bahman Soleimani iman Zahmatkesh Iman  Veisi
      Iss. 20 , Vol. 10 , Autumn_Winter 2022
      Permeability is one of the most important petrophysical parameters that play a key role in the discussion of production and development of hydrocarbon fields. In this study, first, the magnetic resonance log in Asmari reservoir was evaluated and permeability was calcula Full Text
      Permeability is one of the most important petrophysical parameters that play a key role in the discussion of production and development of hydrocarbon fields. In this study, first, the magnetic resonance log in Asmari reservoir was evaluated and permeability was calculated using two conventional methods, free fluid model (Coates) and Schlumberger model or mean T2 (SDR). Then, by constructing a simple model of artificial neural network and also combining it with Imperialist competition optimization (ANN-ICA) and particle swarm (ANN-PSO) algorithms, the permeability was estimated. Finally, the results were compared by comparing the estimated COATES permeability and SDR permeability with the actual value, and the estimation accuracy was compared in terms of total squared error and correlation coefficient. The results of this study showed an increase in the accuracy of permeability estimation using a combination of optimization algorithms with artificial neural network. The results of this method can be used as a powerful method to obtain other petrophysical parameters. Manuscript Document

    • Open Access Article

      3 - Designing an Ensemble model for estimating the permeability of a hydrocarbon reservoir by petrophysical lithology Labeling
      abbas salahshoor ahmad Gaeini Alireza shahin mossayeb kamari
      Iss. 20 , Vol. 10 , Autumn_Winter 2022
      Permeability is one of the important characteristics of oil and gas reservoirs that is difficult to predict. In the present solution, experimental and regression models are used to predict permeability, which includes time and high costs associated with laboratory measu Full Text
      Permeability is one of the important characteristics of oil and gas reservoirs that is difficult to predict. In the present solution, experimental and regression models are used to predict permeability, which includes time and high costs associated with laboratory measurements. Recently, machine learning algorithms have been used to predict permeability due to better predictability. In this study, a new ensemble machine learning model for permeability prediction in oil and gas reservoirs is introduced. In this method, the input data are labeled using the lithology information of the logs and divided into a number of categories and each category was modeled by machine learning algorithm. Unlike previous studies that worked independently on models, here we were able to predict the accuracy of such a square mean error by designing a group model using ETR, DTR, GBR algorithms and petrophysical data. Improve dramatically and predict permeability with 99.82% accuracy. The results showed that group models have a great effect on improving the accuracy of permeability prediction compared to individual models and also the separation of samples based on lithology information was a reason to optimize the Trojan estimate compared to previous studies. Manuscript Document

    • Open Access Article

      4 - Qom Formation, Microfacies, Depositional sequence, Maragh area.
      امراله  صفری Hossein Ghanbarloo Ebrahim  Mohammadi
      Iss. 20 , Vol. 10 , Autumn_Winter 2022
      The Qom Formation is located at the Maragh area (20 kilometers southwest of Kashan). The formation with 216 m thickness contains shale and limestones. Volcanic rocks unconformably are covered by the Qom Formation. The upper boundary of the Qom Formation with the Upper R Full Text
      The Qom Formation is located at the Maragh area (20 kilometers southwest of Kashan). The formation with 216 m thickness contains shale and limestones. Volcanic rocks unconformably are covered by the Qom Formation. The upper boundary of the Qom Formation with the Upper Red Formation is also unconformable. Nine microfacies and terrigenous facies were identified based on the main components and sedimentological features. These microfacies and terrigenous facies were deposited on an open-shelf carbonate platform. Three environments were recognized in this carbonate platform. These environments include the inner shelf (restricted and semi-restricted lagoon), middle shelf, and outer shelf. In addition, three third-order and one incomplete depositional sequences were identified based on the vertical distribution of microfacies. Manuscript Document

    • Open Access Article

      5 - Comparison of the function of conventional neural networks for estimating porosity in one of the southeastern Iranian oil fields
      Farshad Toffighi parviz armani Ali Chehrazi َAndisheh Alimoradi
      Iss. 20 , Vol. 10 , Autumn_Winter 2022
      In the oil industry, artificial intelligence is used to identify relationships, optimize, estimate and classify porosity. One of the most important steps in evaluating the petrophysical parameters of the reservoir is to identify the porosity properties. The main purpose Full Text
      In the oil industry, artificial intelligence is used to identify relationships, optimize, estimate and classify porosity. One of the most important steps in evaluating the petrophysical parameters of the reservoir is to identify the porosity properties. The main purpose of this study is to compare the accuracy and generalizability of three multilayer feed neural networks (MLFNs), radius base function networks (RBFNs) and probabilistic neural networks (PNNs) to estimate porosity using seismic properties. In this regard, geological data of 7 wells were evaluated from an offshore oil field in Hindijan in the northwest of the Persian Gulf basin. Acoustic impedance was estimated using model-based inversion method and then the mentioned neural networks were designed using optimal seismic properties and evaluated by stepwise regression method. Finally, it became clear that the MLFN model did not work well for estimating porosity. PNN has the best performance accuracy in porosity interpolation, but RBFN generalizability is better. Manuscript Document

    • Open Access Article

      6 - Foramniferal morphogroups of the Qom Formation in E Sirjan and SW Kashan: implication for paleoenvironmental and paleoecological interpretations
      Ebrahim  Mohammadi
      Iss. 20 , Vol. 10 , Autumn_Winter 2022
      The Qom Formation is the main reservoir and source rock of hydrocarbons in central Iran. Foraminifera are now central to our ability to date, correlate and analyse the sedimentary basins that are currently key to the economic wellbeing of the world. Morphogroup analysis Full Text
      The Qom Formation is the main reservoir and source rock of hydrocarbons in central Iran. Foraminifera are now central to our ability to date, correlate and analyse the sedimentary basins that are currently key to the economic wellbeing of the world. Morphogroup analysis, due to independence of species level taxonomy, as wel as permit to comparison of assemblages of differing ages, is a useful tool for ecological and palaeoecological interpretation. It is independent of species level taxonomy and is thus relatively elementary to translate from one worker to another. Foramniferal study of the Qom Formation in the Bujan (eastern Sirjan; with Rupelin-Chattian in age and 156 m thickness) and Varkan (southwestern Kashan; with Rupelin in age and 190 m thickness) sections resulted in identification of seven morphogroups. The morphogroups were distinguished according to test/shell morphology and architecture (general shape, mode of coiling, and arrangement and number of chambers), inferred life habitat either living on the surface of the sediments or within the sediments (epifaunal and infaunal), and feeding strategy (suspension-feeder, herbivore, etc.). Generaly, epifaunal morphogroups were dominated in both study sections. The morphogroup analyses showed variations in the percentage of the dominant morphotypes, suggesting fluctuations in the paleoecological conditions. In the Bujan section, the Rupelin deposits are dominated by calcareous porcelaneous morphogroups; while the Chattian deposits are dominated by hyaline morphogroups, which indicates the lower and upper parts were deposited in inner ramp (lagoonal environments) and middle ramps, respectively. This significant change through time reffers to gradual increasing of the basin depth, decreasing the light intensity, reducing the salinity and decreacing the nutrient level. De dominance of the hyaline morphogroups throughout of the Varkan section is indicative of the deposition in middle ramp environments with normal salinity under meso-photic to oligo-photic conditions. Manuscript Document
    Most Viewed Articles

    • Open Access Article

      1 - Study of Petrography & Petrophysics of Permian- Triassic carbonate sediments in Qatar –South Pars Arch
      Ali reza Bashari
      Iss. 7 , Vol. 3 , Spring 2014
      Abstract Dalan and Kangan Formations are major gas reservoirs in the Persian Gulf and surrounding area. Several supper giant gas fields has been found in the region. In this study reservoir rock types were identified and were divided into four lithostratigraphic zo Full Text
      Abstract Dalan and Kangan Formations are major gas reservoirs in the Persian Gulf and surrounding area. Several supper giant gas fields has been found in the region. In this study reservoir rock types were identified and were divided into four lithostratigraphic zones: K1 to K4. Each of the four succeeding zones have been divided into different subzone. This Studies identified different facies-types on the Dalan and Kangan formation in this region. Petrophysical & Petrographycal studies indicate that the best reservoir unites are found in: Dolo-grainstones, Dolowakestones/Packstones and Grainstones. Isopach maps and Depth maps show variations in thickness and depth of different zones in this region. Depth map on top of Kangan formation shows this formation getting deeper toward north- west and south east in the Persian Gulf. Continuity of marker beds in Permian/Triassic sediment and paleontological evidence support diachroneity of these sediments. Manuscript Document

    • Open Access Article

      2 - Studying Maturity and Migration Routes Using Two-Dimensional Modeling in a number of Dezful Dam Oilfields
      Ashkan Maleki Seyed Ali Moallemi Mohammad Hossein Saberi Mohammad Hassan Jazayeri
      Iss. 17 , Vol. 9 , Spring_Summer 2019
      To the southwest of Iran there are large reservoirs of oil and gas including Jurassic and Cretaceous carbonates, with good source rocks in the succession of the Early Cretaceous and Jurassic. The purpose of this study was to investigate the production, migration and cha Full Text
      To the southwest of Iran there are large reservoirs of oil and gas including Jurassic and Cretaceous carbonates, with good source rocks in the succession of the Early Cretaceous and Jurassic. The purpose of this study was to investigate the production, migration and characterization of Pabdeh, Kazhdumi, Garru and Serglu source rocks in the study area. For this purpose, burial history and one-dimensional thermal modeling in four wells and two-dimensional modeling in one section for the study area were evaluated using Openuploo software to determine the maturity of layers and hydrocarbon outflow. Comparison of measured vitrinite temperature and reflectance values with model results was used for model calibration. The results of one-dimensional modelling of the burial and thermal history in this study show that the Sergloo, Grove and Kazhdumi formations have reached maturity and have had hydrocarbon outflow, but the Pabdeh Formation has not reached sufficient maturity for hydrocarbon maturation and production. The results of migration model in the studied section show that the two Early Cretaceous and Middle Cretaceous hydrocarbon systems were separated by Kazhdumi Formation and therefore hydrocarbon migration in deeper layers of Kazhdumi was mostly lateral to Abadan plain. The hydrocarbon produced from the Kazhdumi Formation, in addition to ornithologically rearing the upper layers, migrated to the Ilam and Sarvak layers due to the general slope of the layers laterally and toward the Abadan plain. In general, the process of maturation of source rocks decreased from east to west of the study area. Manuscript Document

    • Open Access Article

      3 - Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain
      Arad Kiani Mohammad Hossein Saberi Bahman Zare nejad Elham Asadi Nasim Rahmani
      Iss. 16 , Vol. 8 , Autumn_Winter 2019
      The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an importan Full Text
      The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important well in one of the oil fields of Abadan plain has been used. Based on microscopic studies, 13 microfacies have been identified in the form of Four facies tidal flat, lagoon, shoal and open marine for Sarvak Formation deposits in the studied oil field, indicating that the upper part of the Sarvak Formation is deposited in a homoclinal carbonate ramp. Among the identified diagenetic processes, dissolution, cementation, dolomitization, fracturing, compaction, neomorphism, micritization, bioturbation, pyritization, hematitization, phosphatization and silicification are mentioned. Diagenetic processes of Sarvak Formation occurred in three marine, meteoric and burial environments. Among the dissolution and fracturing diagenetic processes, the most important role has been in increasing the reservoir quality, and cementation and compaction have been the most important factors in reducing reservoir quality. Sequence stratigraphy studies identified third order sedimentary sequences of the age of Turonian, Late Cenomanian, and Middle Cenomanian, and studied the facies and diagenetic processes within its framework. Correlation of porosity and permeability data of the core showed that the reservoir quality in this formation was influenced by facies and diagenetic processes. So that the microfacies containing the rudist have the highest reservoir quality. Due to the diagenetic processes, sedimentary and porosity and permeability data, the facies shoal and open marine to the land have the best reservoir quality. Manuscript Document

    • Open Access Article

      4 - Study the role of drilling mud loss modeling and FMI log in determining Asmari reservoir fractures in one of the oil fields in Southwest Iran
      Kioumars Taheri Mohammad Reza  Rasaei Abbas Ashjaei
      Iss. 14 , Vol. 7 , Autumn_Winter 2017
      Understanding of oil and gas reservoirs is of great help in maximizing hydrocarbon recovery. In the study of the characteristics of oil structures, the study of fractures of reservoir rock in the stages of production and development of the field is very necessary. Nowad Full Text
      Understanding of oil and gas reservoirs is of great help in maximizing hydrocarbon recovery. In the study of the characteristics of oil structures, the study of fractures of reservoir rock in the stages of production and development of the field is very necessary. Nowadays, the use of mud loss modeling and image logs in helping accomplish this task is of great assistance to oil geologists. Since the most of Iran's reservoirs are carbonate kind, investigating and identifying fractures, the degree of fissures opening and porosity distribution in the Asmari reservoir field of study, It is one of the most effective factors in the production of hydrocarbons from this field. One of the best ways to identify and interpret geology in the well, using of the FMI image log is, which can create high quality images from the well. With the help of the images provided, can determine the types of fractures, porosity, the distribution of diagenetic porous spaces and the estimation of permeability trend. In this article, first, structure and Functionality of the FMI image log and then drilling and production problems were evaluated in Asmari reservoir. In the following, the functional role of the log in interpreting and determining the degree of fissures opening, porosity distribution and permeability level in 8 wells in Asmari reservoir, has been evaluated. In this study, identification of Asmari reservoir fractures and how to expand these fractures in the reservoir By using mud loss modeling, interpretation of the FMI image log and the effect of these fractures was on the porosity and permeability of the reservoir. In this study, it has been determined that, fractures identified in wells very good matching with drilling mud loss maps with rock basement faults at the has anticline of the Asmari reservoir. Manuscript Document

    • Open Access Article

      5 - Modeling Mud Loss in Asmari Formation Using Geostatistics in RMS Software Environment in an Oil Field in Southwestern Iran
      Kioumars Taheri Farhad Mohammad Torab
      Iss. 11 , Vol. 6 , Spring_Summer 2016
      Studying lost circulation in Asmari formation is very important because about 25% to 40% of drilling costs is allocated to drilling mud expenses. Considering that Studied oil field encounters severe mud loss in Asmari formation, therefore the purpose of this study is re Full Text
      Studying lost circulation in Asmari formation is very important because about 25% to 40% of drilling costs is allocated to drilling mud expenses. Considering that Studied oil field encounters severe mud loss in Asmari formation, therefore the purpose of this study is recognition of the lost circulation zones and illustrating the mud loss distribution in Asmari formation. The mud loss maps in Asmari field were plotted in RMS software using moving average algorithm method. For this purpose, the data of 363 wells in this oil field was processed after data preparation, for mapping and 3D modeling of 11 different zones in Asmari formation. The data processing includes different stages such as elimination of outliers, normal transformation, drawing the histogram, variography and estimation and modeling. In this research, the geostatistical kriging method was also used for estimation and 3D modeling of mud loss in Asmari formation so that the output of geostatistical modeling method shows the localized and better results. Consequently, by applying and analysis of results, the 2D and 3D models of mud loss in Asmari formation were demonstrated. By simulation and modeling of mud loss and its comparison with reservoir fault modeling and production indexes plots, it was identified that the dominant mud losses are related to fault zone fractures and in minor cases the increasing of mud weight is the reason of mud loss. Applying appropriate operations such as under balance drilling (UBD) and suitable well placement, use of drilling mud with proper mud weight in severe mud loss points, use of NIF and MMH especial drilling muds with lowest formation damage, or a combination of these methods are suggested for mud loss control in critical points of the oil field. Manuscript Document

    • Open Access Article

      6 - Three-dimensional geological modeling in two zones of eastern side of Ahvaz oil field
      Razeyeh . Doosti Irani Maryam Payrovi Mohammad .rahim karimi Mehdi . Doosti Irani
      Iss. 9 , Vol. 5 , Spring_Summer 2015
      The Ahvaz field is one of the most important oil fields in the Zagros Basin which is located in the Dezful Embayment. The trend of Ahvaz oil field is northwest- southeast parallel to the Zagros mountains. The purpose of this study is the geological 3D simulation (petrop Full Text
      The Ahvaz field is one of the most important oil fields in the Zagros Basin which is located in the Dezful Embayment. The trend of Ahvaz oil field is northwest- southeast parallel to the Zagros mountains. The purpose of this study is the geological 3D simulation (petrophysical) for the zone one and two in the eastern part of the Ahvaz oil field. In this investigation, porosity modeling, water saturation and shale volume by using sequential Gaussian Simulation (SGS) was performed. At first, well logs, cores, well’s coordination, top and thickness of formations of the zone three of Ilam Formation and zone one of Sarvak Formation were collected. These information related to 25 wells in the eastern part of the Ahvaz oil field was used for the 3D modeling of the reservoir by using Petrel software. For the recognition of spatial correlation, variograms based on water saturation and permeability and three dimensional model of the petrophysical parameters and net to gross ratio (NTG) were drawn. Manuscript Document

    • Open Access Article

      7 - Genetic classification of the Persian Gulf Eastern part oil fields by infrared spectroscopy of asphaltene samples
      Morteza Taherinezhad Morteza Asemani Ahmad reza Rabbani
      Iss. 12 , Vol. 6 , Autumn_Winter 2016
      Asphaltene is always considered as a problem in oil industry. But, asphaltenes are desirable compounds in geochemical studies specially in oil-oil correlation. Oil-oil correlation is one of the most important issues in geochemical studies that enables to classify oils g Full Text
      Asphaltene is always considered as a problem in oil industry. But, asphaltenes are desirable compounds in geochemical studies specially in oil-oil correlation. Oil-oil correlation is one of the most important issues in geochemical studies that enables to classify oils genetically. Asphaltenes due to their structural similarity with kerogen and unaffected and/or little affected from secondary processes are known as valuable compounds in geochemical studies. So, in this paper the structural characteristics of asphaltenes were considered as a correlation parameter. For this study 5 oil samples were collected from the Persian Gulf eastern part oil fields. Structural characteristics of these asphaltenes were investigated by Fourier transform infrared (FTIR) spectroscopy. 2D and 3D graphs based on aliphatic and aromatic compounds (predominant compounds in asphaltenes structure) and sulfoxide and carbonyl functional groups (which are represent of sulfur and oxygen abundance in asphaltenes) were used for comparison of asphaltenes structure in different samples. According to the results of these defined graphs, the studied oil samples comprise two oil families with distinct genetic characteristics. The first oil family consists of the Salman and Reshadat oil samples, and the second oil family consists of the Resalat, Siri E and Siri D oil samples. To validation and complement the obtained results, the other common geochemical techniques such as stable carbon isotope and biomarkers parameters, were employed and these techniques completely confirmed previous results. According to biomarker parameters, the first oil family originated from marl source rock and the second oil family was sourced from carbonate source rock. Manuscript Document

    • Open Access Article

      8 - Estimation of relative permeability curves from capillary pressure data in one of iranian carbonate reservoir
      بابک شعبانی عزت اله کاظم زاده
      Iss. 2 , Vol. 1 , Autumn_Winter 2012
      Relative permeability can be measured directly from cores, but due to problems such as unavailability of experimental results of direct relative permeability measurement, indirect techniques also have been used to calculate relative permeability. One of these methods is Full Text
      Relative permeability can be measured directly from cores, but due to problems such as unavailability of experimental results of direct relative permeability measurement, indirect techniques also have been used to calculate relative permeability. One of these methods is estimating relative permeability curves from capillary pressure data that the reliability of this method for approximation of liquid-gas relative permeability curves had thoroughly investigated. However, there is not enough information to conclude which method is the standard one for calculating oil-water relative permeability curves. Various capillary pressure techniques such as the Corey, Brooks-Corey, Li-Purcell and Li-Burdine methods were utilized to calculate oil-water relative permeabilities using the measured oil-water capillary pressure data in drainage process in an oil-wet Carbonate reservoir. Despite wide popularity of Purcell and Burdine methods for calculating relative permeability, new Li-Purcell and LiBurdine methods were used. The calculated results were compared to the experimental data of oil-water relative permeabilities measured in a Carbonate reservoir. The Corey and Brooks-Corey models are shown an acceptable and nearly exact match with the measured oil relative permeability values. However, the Li-Purcell and Li-Burdine models underestimate the values for wetting phase in most cases. It is also worth mentioning that, except Li-Purcell method, the results of all other methods for calculating non-wetting phase relative permeability are almost the same and overestimate the values. Then, rock typing on the basis of pore throat radius at 35% mercury saturation were done and the accuracy of each model were examined for all rock types. Results of this work revealed that calculation of oil-water relative permeability using the capillary pressure data is also a reliable technique in oil-wet carbonate reservoirs. Manuscript Document

    • Open Access Article

      9 - Calculation of elasticity modulus and rock strength parameters and their relationship with porosity in Dalan formation in one of the well in south pars gas field
      Reza Khoshnevis Zadeh Alireza Hajian Ehsan Larki
      Iss. 14 , Vol. 7 , Autumn_Winter 2017
      The elastic parameters of the rock include the Young modulus, the Poisson ratio, the bulk modulus and the shear modulus. Young modulus with the unconfined compressive strength of rock, are two key parameters in the definition of intact rock. Elastic modulus represents t Full Text
      The elastic parameters of the rock include the Young modulus, the Poisson ratio, the bulk modulus and the shear modulus. Young modulus with the unconfined compressive strength of rock, are two key parameters in the definition of intact rock. Elastic modulus represents the amount of rock rigidity and is known as the stress-strain chart slope. These parameters represent of rock strength to failure, are important parameters for the stability analysis of wellbore stability. According to the unavailability and cost of core data, and also attended to this fact that the data from the core are not continuous and not available at all points in the well, the uses of DSI logs is one of the best methods for calculating elastic modules. Using these logs, you can also study elastic moduli continuously in a well. In this study, elastic dynamic parameters were calculated using the DSI and density logs for the Dalan Formation. Attention to the fact that the calculated parameters using the velocity of the sound waves are of the type of dynamic parameters, these parameters were have converted to the static modules using appropriate empirical relationships. The rock strength Parameters were calculated using the experimental relationships commonly used in the oil industry to determine rock strength parameters. These parameters were calculated according to static elastic modulus as well as porosity and shale volume. Comparing the values of elastic modulus and rock strength parameters with porosity showed that porosity with elastic modulus and rock strength parameters has an inverse relationship, so that with increases the porosity, the elastic modulus and rock strength parameters have been reduced. Manuscript Document

    • Open Access Article

      10 - A comprehensive study of shale intervals of Burgan Formation: implications for borehole stability
      محمد سلیمانی سعیده رعیت دوست
      Iss. 6 , Vol. 3 , Autumn 2013
      Abstract This aims of this study is to characterize the Shale intervals of Burgan Formation from a borehole stability point of view. This paper describes the process and workflow for data-acquisition and interpretation in a shale formation characterization program an Full Text
      Abstract This aims of this study is to characterize the Shale intervals of Burgan Formation from a borehole stability point of view. This paper describes the process and workflow for data-acquisition and interpretation in a shale formation characterization program and demonstrates not only the benefits of acquiring specific data, but also highlights the uses of the data to aid the exploration decision process. The next purpose of this paper is to provide a research process that can be applied in similar geological settings. In the study process, we collected a complete set of information and samples from the field and presented a detailed case study, including laboratorial studies of formation samples and interpretation of the information. Available samples and information sources from Burgan Formation include drillhole cores. The minerals were defined by direct and indirect methods. Bulk XRD analyses performed on core samples showed presence of traces of clay minerals. For determination of the exact clay mineral type, clay minerals were extracted and treated by heat and ethylene glycol saturation. Treated samples were subjected to XRD analyses. Interpretation of the natural gamma spectrometry logs allowed the determination of the type and content of clay minerals. In a next step, in order to study the distribution of minerals types, SEM photomicrographs and Cation exchange capacity (CEC) of the samples were carried out. The results revealed that shale intervals of Burgan Formation are not expandable clays. The instability problem cannot be completely solved by drilling fluid design. The study shows, different approached methods reached the same results. Manuscript Document
    Upcoming Articles
  • Affiliated to
    Iranian Society Petroleum Geology
    Director
    Editor in Chief
    Internal Manager
    ISSN: 8738-2251
    Email
    journal.ispg.ir
    Address
    Phone

    Search

    Indexers of this journal

    News( Archive )

    Statistics

    Number of Volumes 10
    Number of Issues 20
    Printed Articles 152
    Number of Authors 447
    Article Views 155415
    Article Downloads 4620
    Number of Submitted Articles 222
    Number of Rejected Articles 54
    Number of Accepted Articles 138
    Acceptance 62 %
    Admission Time(Day) 49
    Reviewer Count 84
    Last Update 8/9/2022